Skip to content

Commit

Permalink
Changing construction of the first guess and coefficient matrices in …
Browse files Browse the repository at this point in the history
…NLTE solver (#2201)

* implementing nlte_excitation

* ran black

* fixed a typo

* got rid of unnecessary lines

* rewrote tests

* made a change on assigning the config values to plasma properties

* fixed the tests

* Update tardis/io/tests/test_config_reader.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* restructured the first guess for NLTE solver to be compatible with NLTE excitation too

* ran black

* modified the existing rates to change when treating species with NLTE excitation

* nlte not implemented, remove from rate_matrix_index

* ran black

* fixed an issue with one of the tests

* attempt of adding bound bound interaction coefficients

* fixed an issue with bound bound rates matrix

* added docstrings

* ran black

* changed one of the methods to static

* added test for bound bound rates part of the matrix

* ran black

* added docstrings to nlteexcitationdata

* got rid of unnecessary import

* added a new parameter to the docsting of the method

* got rid of the number conservation row for the bound-bound matrix as it will be added on in the overall matrix construction

* ran black

* remodified the tests

* fixed a loop issue

* added a todo comment

* renamed a function

* updated a docstring

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* got rid of t_electrons

* resolved an issue with tests

* added additional information into a docstring

* added a docstring

* got rid of unnecessary grouping of rates

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Wolfgang Kerzendorf <wkerzendorf@gmail.com>

* fixing a minor issue in tests

* separated nlte excitation coefficients

* running black

* separating beta sobolev related stuff from the rest of the bound bound matrix

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* factored prepare_bound_bound_rate_matrix

* removed an unnecessary function for excitation rates

* removed unnecessary method for concatinating rates for NLTE excitation

* ran black on nlte_rate_equation_solver

* got rid of an unnecessary method

* fixed a typo

* small fixed

* modified the j_blues and beta_sobolevs used in the tests

* running black once again

* adding rate_matrix_index to first guess docstring

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* Update tardis/plasma/tests/test_nlte_excitation.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* fixed a typo

* switched from using the atomic_data_levels to number_of_levels

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* fixed the issue with tests

* ran black once again

* left a comment for future generations of NLTE youth

* ran black once again

* Update tardis/plasma/properties/nlte_rate_equation_solver.py

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>

* got rid of an unnecessary argument

---------

Co-authored-by: Christian Vogl <cvogl@mpa-garching.mpg.de>
Co-authored-by: Wolfgang Kerzendorf <wkerzendorf@gmail.com>
  • Loading branch information
3 people authored May 3, 2023
1 parent f85d3c7 commit 3cea409
Show file tree
Hide file tree
Showing 4 changed files with 329 additions and 8 deletions.
53 changes: 53 additions & 0 deletions tardis/plasma/properties/nlte_excitation_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import logging

import numpy as np

logger = logging.getLogger(__name__)


class NLTEExcitationData(object):
"""Data needed for NLTE excitation treatment."""

def __init__(self, atom_data_lines, nlte_excitation_species):
"""Initializes the NLTEExcitationData object.
Parameters
----------
atom_data_lines : pandas.DataFrame
Information on lines in the atomic data.
nlte_excitation_species : list
List of species treated in NLTE excitation.
"""
self.atom_data_lines = atom_data_lines
self.lines = atom_data_lines.reset_index()
self.nlte_excitation_species = nlte_excitation_species

if nlte_excitation_species:
logger.info("Preparing the NLTE data")
self._init_indices()

def _init_indices(self):
"""Initializes A_ul and B_ul, B_lu coefficients."""
self.lines_idx = {}
self.lines_level_number_lower = {}
self.lines_level_number_upper = {}
self.A_uls = {}
self.B_uls = {}
self.B_lus = {}
nlte_excitation_species = self.nlte_excitation_species
for species in nlte_excitation_species:
lines_idx = np.where(
(self.lines.atomic_number == species[0])
& (self.lines.ion_number == species[1])
)
self.lines_idx[species] = lines_idx
self.lines_level_number_lower[
species
] = self.lines.level_number_lower.values[lines_idx].astype(int)
self.lines_level_number_upper[
species
] = self.lines.level_number_upper.values[lines_idx].astype(int)

self.A_uls[species] = self.atom_data_lines.A_ul.values[lines_idx]
self.B_uls[species] = self.atom_data_lines.B_ul.values[lines_idx]
self.B_lus[species] = self.atom_data_lines.B_lu.values[lines_idx]
165 changes: 157 additions & 8 deletions tardis/plasma/properties/nlte_rate_equation_solver.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from scipy.optimize import root

from tardis.plasma.properties.base import ProcessingPlasmaProperty
from tardis.plasma.properties.nlte_excitation_data import NLTEExcitationData

__all__ = [
"NLTERateEquationSolver",
Expand All @@ -25,6 +26,7 @@ def calculate(
phi,
rate_matrix_index,
number_density,
nlte_excitation_species,
):
"""Calculates ion number densities and electron densities using NLTE ionization.
Expand Down Expand Up @@ -56,6 +58,8 @@ def calculate(
if treated in NLTE ionization, 3rd index is "nlte_ion".
number_density : pandas.DataFrame
Number density in each shell for each species.
nlte_excitation_species : list
List of species treated in NLTE excitation.
Returns
-------
Expand All @@ -65,6 +69,7 @@ def calculate(
Electron density with NLTE ionization treatment.
"""

# nlte_data = NLTEExcitationData(atomic_data.lines, nlte_excitation_species) - will be used in a future PR
(
total_photo_ion_coefficients,
total_rad_recomb_coefficients,
Expand All @@ -80,7 +85,7 @@ def calculate(
levels,
level_boltzmann_factor,
)

# TODO: call prepare_bound_bound_rate_matrix if there are NLTE excitation species
initial_electron_densities = number_density.sum(axis=0)
atomic_numbers = (
rate_matrix_index.get_level_values("atomic_number")
Expand All @@ -99,6 +104,7 @@ def calculate(
number_density[shell]
)
first_guess = self.prepare_first_guess(
rate_matrix_index,
atomic_numbers,
number_density[shell],
initial_electron_densities[shell],
Expand Down Expand Up @@ -420,6 +426,7 @@ def prepare_ion_recomb_coefficients_nlte_ion(
.groupby(level=("atomic_number", "ion_number"))
.sum()
)

total_rad_recomb_coefficients = (
(alpha_sp + alpha_stim)
.groupby(level=["atomic_number", "ion_number"])
Expand Down Expand Up @@ -555,12 +562,18 @@ def deriv_matrix_block(
return np.dot(deriv_matrix, current_ion_number_densities)

def prepare_first_guess(
self, atomic_numbers, number_density, electron_density
self,
rate_matrix_index,
atomic_numbers,
number_density,
electron_density,
):
"""Constructs a first guess for ion number densities and electron density, where all species are singly ionized.
Parameters
----------
rate_matrix_index : pandas.MultiIndex
(atomic_number, ion_number, treatment type)
atomic_numbers : numpy.array
All atomic numbers present in the plasma.
number_density : pandas.DataFrame
Expand All @@ -573,13 +586,13 @@ def prepare_first_guess(
numpy.array
Guess for ion number densities and electron density.
"""
# TODO needs to be changed for excitation
array_size = (number_density.index.values + 1).sum() + 1
first_guess = np.zeros(array_size)
index = 1
first_guess = pd.Series(0.0, index=rate_matrix_index)
for atomic_number in atomic_numbers:
first_guess[index] = number_density.loc[atomic_number]
index += atomic_number + 1
first_guess.loc[(atomic_number, 1)][0] = number_density.loc[
atomic_number
]
# TODO: After the first iteration, the new guess can be the old solution.
first_guess = first_guess.values
first_guess[-1] = electron_density
return first_guess

Expand Down Expand Up @@ -699,3 +712,139 @@ def prepare_solution_vector(self, number_density):
)
solution_vector = np.hstack(solution_array + [0])
return solution_vector

@staticmethod
def prepare_bound_bound_rate_matrix(
number_of_levels,
lines_index,
r_ul_index,
r_ul_matrix,
r_lu_index,
r_lu_matrix,
beta_sobolev,
):
"""Calculates a matrix with bound-bound rates for NLTE excitation treatment.
Parameters
----------
number_of_levels : int
Number of levels for the specified species.
lines_index : numpy.array
Index of lines in nlte_data.
r_ul_index : numpy.array
Index used for r_ul matrix
r_ul_matrix : numpy.array
Matrix with the rates(upper to lower transition) of bound-bound interaction(DOES NOT INCLUDE THE BETA SOBOLEVS)
(number_of_levels, number_of_levels, number_of_shells)
r_lu_index : numpy.array
Index used for r_lu matrix
r_lu_matrix : numpy.array
r_lu_matrix : numpy.array
Matrix with the rates(lower to upper transition) of bound-bound interaction(DOES NOT INCLUDE THE BETA SOBOLEVS)
(number_of_levels, number_of_levels, number_of_shells)
beta_sobolev : pandas.DataFrame
Beta Sobolev factors.
Returns
-------
numpy.array (number of levels, number of levels)
Matrix with excitation-deexcitation rates(should be added to NLTE rate matrix for excitation treatment).
NOTE: only works with ONE ion number treated in NLTE excitation AT ONCE.
"""
number_of_shells = beta_sobolev.shape[1]
try:
beta_sobolev_filtered = beta_sobolev.iloc[lines_index]
except AttributeError:
beta_sobolev_filtered = beta_sobolev
r_ul_matrix_reshaped = r_ul_matrix.reshape(
(number_of_levels**2, number_of_shells)
)
r_lu_matrix_reshaped = r_lu_matrix.reshape(
(number_of_levels**2, number_of_shells)
)
r_ul_matrix_reshaped[r_ul_index] *= beta_sobolev_filtered
r_lu_matrix_reshaped[r_lu_index] *= beta_sobolev_filtered
rates_matrix_bound_bound = r_ul_matrix + r_lu_matrix
for i in range(number_of_levels):
rates_matrix_bound_bound[i, i] = -rates_matrix_bound_bound[
:, i
].sum(axis=0)
return rates_matrix_bound_bound

def prepare_r_uls_r_lus(
number_of_levels,
number_of_shells,
j_blues,
excitation_species,
nlte_data,
):
"""Calculates part of rate matrices for bound bound interactions.
Parameters
----------
number_of_levels : int
Number of levels for the NLTE excitation species.
number_of_shells : int
Number of shells.
j_blues : pandas.DataFrame, dtype float
Mean intensities in the blue wings of the line transitions.
excitation_species : tuple
Species treated in NLTE excitation.
nlte_data : NLTEExcitationData
Data relevant to NLTE excitation species.
Returns
-------
lines_index : numpy.array
Index of lines in nlte_data.
number_of_levels : int
Number of levels for the specified species.
r_ul_index : numpy.array
Index used for r_ul matrix
r_ul_matrix_reshaped : numpy.array
Matrix with the rates(upper to lower transition) of bound-bound interaction(DOES NOT INCLUDE THE BETA SOBOLEVS)
r_lu_index : numpy.array
Index used for r_lu matrix
r_lu_matrix_reshaped : numpy.array
Matrix with the rates(lower to upper transition) of bound-bound interaction(DOES NOT INCLUDE THE BETA SOBOLEVS)
"""
# number_of_levels = atomic_data_levels.energy.loc[
# excitation_species
# ].count() do this in the solver
lnl = nlte_data.lines_level_number_lower[excitation_species]
lnu = nlte_data.lines_level_number_upper[excitation_species]
(lines_index,) = nlte_data.lines_idx[excitation_species]

try:
j_blues_filtered = j_blues.iloc[lines_index]
except AttributeError:
j_blues_filtered = j_blues
A_uls = nlte_data.A_uls[excitation_species]
B_uls = nlte_data.B_uls[excitation_species]
B_lus = nlte_data.B_lus[excitation_species]
r_lu_index = lnu * number_of_levels + lnl
r_ul_index = lnl * number_of_levels + lnu
r_ul_matrix = np.zeros(
(number_of_levels, number_of_levels, number_of_shells),
dtype=np.float64,
)
r_ul_matrix_reshaped = r_ul_matrix.reshape(
(number_of_levels**2, number_of_shells)
)
r_ul_matrix_reshaped[r_ul_index] = (
A_uls[np.newaxis].T + B_uls[np.newaxis].T * j_blues_filtered
)
r_lu_matrix = np.zeros_like(r_ul_matrix)
r_lu_matrix_reshaped = r_lu_matrix.reshape(
(number_of_levels**2, number_of_shells)
)
r_lu_matrix_reshaped[r_lu_index] = (
B_lus[np.newaxis].T * j_blues_filtered
)
return (
lines_index,
r_ul_index,
r_ul_matrix,
r_lu_index,
r_lu_matrix,
)
# TODO: beta sobolev needs to be recalculated for each iteration, because it depends on number density
Loading

0 comments on commit 3cea409

Please sign in to comment.