-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
5,753 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
### test-Score_binary_outcome.R --- | ||
#---------------------------------------------------------------------- | ||
## Author: Thomas Alexander Gerds | ||
## Created: Jun 17 2024 (11:59) | ||
## Version: | ||
## Last-Updated: Jul 2 2024 (11:51) | ||
## By: Thomas Alexander Gerds | ||
## Update #: 15 | ||
#---------------------------------------------------------------------- | ||
## | ||
### Commentary: | ||
## | ||
### Change Log: | ||
#---------------------------------------------------------------------- | ||
## | ||
### Code: | ||
library(testthat) | ||
library(riskRegression) | ||
library(data.table) | ||
context("binary outcome") | ||
set.seed(112) | ||
d <- sampleData(43,outcome="binary") | ||
f1 <- glm(Y~X1+X5+X8,data=d, family="binomial") | ||
f2 <- glm(Y~X2+X6+X9+X10,data=d, family="binomial") | ||
f3 <- d$X8 | ||
# {{{ Missing values in data | ||
test_that("Missing values in data", { | ||
d <- data.frame(time=c(1,2,3,NA,5,6),event=c(1,NA,1,0,NA,0),X=c(1,3,1,NA,9,-8)) | ||
expect_error(Score(list(d$X),data=d,times=3,formula=Hist(time,event)~1,metrics="auc")) | ||
}) | ||
# }}} | ||
# {{{ IPA | ||
test_that("R squared/IPA", { | ||
r1 <- rsquared(f1,newdata=d) | ||
r2 <- IPA(f2,newdata=d) | ||
full <- Score(list(f1=f1,f2=f2),formula=Y~1,data=d,conf.int=TRUE,summary=c("RR"),plots="ROC") | ||
expect_equal(ignore_attr=TRUE,r1$IPA.drop[1],full$Brier$score[model=="f1",IPA]) | ||
expect_equal(ignore_attr=TRUE,r2$IPA[2],full$Brier$score[model=="f2",IPA]) | ||
}) | ||
# }}} | ||
# {{{ robustness against order of data | ||
test_that("robustness against order of data set. metrics = auc",{ | ||
s1 <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=TRUE,metrics="auc") | ||
s1b <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=.95,metrics="auc") | ||
setkey(d,X4) | ||
f3 <- d$X8 | ||
s2 <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=.95,metrics="auc") | ||
s2b <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=.95,metrics="auc") | ||
setorder(d,Y) | ||
f3 <- d$X8 | ||
s3 <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=.95,metrics="auc") | ||
s3b <- Score(list(f1,f2,f3),formula=Y~1,data=d,conf.int=.95,metrics="auc") | ||
## lapply(names(s1),function(n){print(n);expect_equal(ignore_attr=TRUE,s1[[n]],s3[[n]])}) | ||
s1$call$conf.int <- .95 | ||
expect_equal(ignore_attr=TRUE,s1,s2) | ||
expect_equal(ignore_attr=TRUE,s1,s3) | ||
expect_equal(ignore_attr=TRUE,s1$AUC,s1b$AUC) | ||
expect_equal(ignore_attr=TRUE,s2$AUC,s2b$AUC) | ||
expect_equal(ignore_attr=TRUE,s3$AUC,s3b$AUC) | ||
}) | ||
test_that("binary outcome: robustness against order of data. metrics: Brier and auc + Brier",{ | ||
s1 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics="brier",cause="1") | ||
s2 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics=c("auc","brier"),cause="1") | ||
s3 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics=c("auc","brier"),se.fit=FALSE,cause="1") | ||
setkey(d,Y) | ||
S1 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics="brier",cause="1") | ||
S2 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics=c("auc","brier"),cause="1") | ||
S3 <- Score(list(X6=glm(Y~X6,data=d,family='binomial'),X9=glm(Y~X9,data=d,family='binomial'),X10=glm(Y~X10,data=d,family='binomial')),formula=Y~1,data=d,null.model=FALSE,metrics=c("auc","brier"),se.fit=FALSE,cause="1") | ||
expect_equal(ignore_attr=TRUE,s1,S1) | ||
expect_equal(ignore_attr=TRUE,s2,S2) | ||
expect_equal(ignore_attr=TRUE,s3,S3) | ||
expect_equal(ignore_attr=TRUE,s1$Brier,s2$Brier) | ||
expect_equal(ignore_attr=TRUE,s1$Brier$score$Brier,s3$Brier$score$Brier) | ||
expect_equal(ignore_attr=TRUE,s2$Brier$score$Brier,s3$Brier$score$Brier) | ||
expect_equal(ignore_attr=TRUE,S1$Brier,S2$Brier) | ||
expect_equal(ignore_attr=TRUE,S1$Brier$score$Brier,S3$Brier$score$Brier) | ||
expect_equal(ignore_attr=TRUE,S2$Brier$score$Brier,S3$Brier$score$Brier) | ||
}) | ||
|
||
# }}} | ||
# {{{ binary outcome: AUC comparison with pROC | ||
test_that("binary outcome: AUC comparison with pROC", { | ||
if (!requireNamespace("pROC",quietly=TRUE)){ | ||
message("Package pROC not installed. Skip this test. predictCSC.") | ||
}else{ | ||
set.seed(17) | ||
y <- rbinom(100, 1, .5) | ||
x1 <- rnorm(100) + 1.5 * y | ||
x2 <- rnorm(100) + .5 * y | ||
x3 <- rnorm(100) + 2.5 * y | ||
x <- data.frame(x1,x2,x3) | ||
y <- as.factor(y) | ||
r1 <- pROC::roc(y~x1) | ||
r2 <- pROC::roc(y~x2) | ||
r3 <- pROC::roc(y~x3) | ||
procres <- pROC::roc.test(r1,r2) | ||
d <- data.frame(x1,x2,x3,y) | ||
## Source(riskRegression) | ||
scoreres <- Score(list(X1=~x1,X2=~x2,X3=~x3),formula=y~1,data=d,null.model=FALSE,cause="1",metrics="auc") | ||
## Roc(list(X1=glm(y~x1,data=d,family='binomial'),X2=glm(y~x2,data=d,family='binomial'),X3=glm(y~x3,data=d,family='binomial')),formula=y~1,data=d) | ||
scoreres <- Score(list(X1=glm(y~x1,data=d,family='binomial'),X2=glm(y~x2,data=d,family='binomial'),X3=glm(y~x3,data=d,family='binomial')),formula=y~1,data=d,null.model=FALSE,cause="1") | ||
## to avoid side effects of data.table features we check the following | ||
scoreres1 <- Score(list(X1=glm(y~x1,data=d,family='binomial'),X2=glm(y~x2,data=d,family='binomial'),X3=glm(y~x3,data=d,family='binomial')),formula=y~1,data=d,null.model=FALSE,metrics="auc",cause="1") | ||
scoreres1a <- Score(list(X1=glm(y~x1,data=d,family='binomial'),X2=glm(y~x2,data=d,family='binomial'),X3=glm(y~x3,data=d,family='binomial')),formula=y~1,data=d,null.model=FALSE,metrics="auc",se.fit=0L,cause="1") | ||
expect_equal(ignore_attr=TRUE,scoreres$AUC,scoreres1$AUC) | ||
score.auc <- as.data.frame(scoreres$AUC$score[,c("AUC","se"),with=FALSE]) | ||
expect_equal(ignore_attr=TRUE,scoreres$AUC$score[["AUC"]],c(r1$auc,r2$auc,r3$auc)) | ||
} | ||
}) | ||
# }}} | ||
# {{{ print and summary functionality | ||
test_that("print and summary functionality without null.model", { | ||
x <- Score(list(d$X8),formula=Y~1,data=d,conf.int=TRUE,metrics="AUC",null.model = FALSE) | ||
expect_output(print(x)) | ||
expect_output(summary(x)) | ||
}) | ||
# }}} | ||
|
||
# {{{ cutpoints, sens, spec, PPV, NPV | ||
## testthat("cutpoints, sens, spec, PPV, NPV",{ | ||
## data(pbc,package = "survival") | ||
## setDT(pbc) | ||
## dd = pbc[,.(Y = 1*(time <1200),bili = bili,X = 1*(bili>0.91))] | ||
## Y = dd$Y | ||
## X = dd$X | ||
## x <- Score(list(dd$bili,dd$X),formula=Y~1,data=dd,metrics="auc",cutpoints = 0.91,breaks = rev(sort(unique(dd$bili)))) | ||
## u = table(highbili = X,event = Y) | ||
## U = as.numeric(u) | ||
## names(U) = c("lowbili/noevent","highbili/noevent","lowbili/event","highbili/event") | ||
## a = data.table(Sens = U["highbili/event"]/(U["lowbili/event"]+U["highbili/event"]), | ||
## Spec = U["lowbili/noevent"]/(U["lowbili/noevent"]+U["highbili/noevent"]), | ||
## PPV = U["highbili/event"]/(U["highbili/event"]+U["highbili/noevent"]), | ||
## NPV = U["lowbili/noevent"]/(U["lowbili/event"]+U["lowbili/noevent"])) | ||
## b = x$AUC$cutpoints[,.(TPR,FPR,PPV,NPV)] | ||
## b | ||
## a | ||
## }) | ||
# }}} | ||
|
||
###################################################################### | ||
### test-Score_binary_outcome.R ends here |
Oops, something went wrong.