IEEE International Conference on Systems, Man, And Cybernetics(IEEE SMC)
- Python 3.8.9
- Python packages
# update `pip` for installing tensorboard. pip install -U pip setuptools pip install -r requirements.txt
-
CIFAR-10
Pytorch build-in CIFAR-10 will be downloaded automatically.
-
STL-10
Pytorch build-in STL-10 will be downloaded automatically.
-
CelebA-HQ 128/256
We obtain celeba-hq from this repository and preprocess it into
lmdb
file.-
256x256
python dataset.py path/to/celebahq/256 ./data/celebahq/256
-
128x128
We split data into train test splits by filenames, the test set contains images from
27001.jpg
to30000.jpg
.python dataset.py path/to/celebahq/128/train ./data/celebahq/128
The folder structure:
./data/celebahq ├── 128 │ ├── data.mdb │ └── lock.mdb └── 256 ├── data.mdb └── lock.mdb
-
-
LSUN Church Outdoor 256x256 (training set)
The folder structure:
./data/lsun/church/ ├── data.mdb └── lock.mdb
Pre-calculated statistics for FID can be downloaded here:
- cifar10.train.npz - Training set of CIFAR10
- cifar10.test.npz - Testing set of CIFAR10
- stl10.unlabeled.48.npz - Unlabeled set of STL10 in resolution 48x48
- celebahq.3k.128.npz - Last 3k images of CelebA-HQ 128x128
- celebahq.all.256.npz - Full dataset of CelebA-HQ 256x256
- church.train.256.npz - Training set of LSUN Church Outdoor
Folder structure:
./stats
├── celebahq.3k.128.npz
├── celebahq.all.256.npz
├── church.train.256.npz
├── cifar10.test.npz
├── cifar10.train.npz
└── stl10.unlabeled.48.npz
NOTE
All the reported values (Inception Score and FID) in our paper are calculated by official implementation instead of our implementation.
-
Configuration files
-
We use
absl-py
to parse, save and reload the command line arguments. -
All the configuration files can be found in
./config
. -
The compatible configuration list is shown in the following table:
Script Configurations Multi-GPU train.py
GN-GAN_CIFAR10_CNN.txt
GN-GAN_CIFAR10_RES.txt
GN-GAN_CIFAR10_BIGGAN.txt
GN-GAN_STL10_CNN.txt
GN-GAN_STL10_RES.txt
GN-GAN-CR_CIFAR10_CNN.txt
GN-GAN-CR_CIFAR10_RES.txt
GN-GAN-CR_CIFAR10_BIGGAN.txt
GN-GAN-CR_STL10_CNN.txt
GN-GAN-CR_STL10_RES.txt
train_ddp.py
GN-GAN_CELEBAHQ128_RES.txt
GN-GAN_CELEBAHQ256_RES.txt
GN-GAN_CHURCH256_RES.txt
✔️
-
-
Run the training script with the compatible configuration, e.g.,
train.py
supports training gan onCIFAR10
andSTL10
, e.g.,python train.py \ --flagfile ./config/GN-GAN_CIFAR10_RES.txt
train_ddp.py
is optimized for multi-gpu training, e.g.,CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ddp.py \ --flagfile ./config/GN-GAN_CELEBAHQ256_RES.txt
-
Generate images from checkpoints, e.g.,
--eval
: evaluate best checkpoint.--save PATH
: save the generated images toPATH
python train.py \ --flagfile ./logs/GN-GAN_CIFAR10_RES/flagfile.txt \ --eval \ --save path/to/generated/images
The function normalize_gradient
is implemented based on torch.autograd
module, which can easily normalize your forward propagation of discriminator by updating a single line.
from torch.nn import BCEWithLogitsLoss
from models.gradnorm import penalty_normalize_gradient
net_D = ... # discriminator
net_G = ... # generator
loss_fn = BCEWithLogitsLoss()
# Update discriminator
x_real = ... # real data
x_fake = net_G(torch.randn(64, 3, 32, 32)) # fake data
pred_real = penalty_normalize_gradient(net_D, x_real) # net_D(x_real)
pred_fake = penalty_normalize_gradient(net_D, x_fake) # net_D(x_fake)
loss_real = loss_fn(pred_real, torch.ones_like(pred_real))
loss_fake = loss_fn(pred_fake, torch.zeros_like(pred_fake))
(loss_real + loss_fake).backward() # backward propagation
...
# Update generator
x_fake = net_G(torch.randn(64, 3, 32, 32)) # fake data
pred_fake = penalty_normalize_gradient(net_D, x_fake) # net_D(x_fake)
loss_fake = loss_fn(pred_fake, torch.ones_like(pred_fake))
loss.backward() # backward propagation
...
If you find our work is relevant to your research, please cite: