About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Arcsine distribution constructor.
npm install @stdlib/stats-base-dists-arcsine-ctor
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var Arcsine = require( '@stdlib/stats-base-dists-arcsine-ctor' );
Returns an arcsine distribution object.
var arcsine = new Arcsine();
var mu = arcsine.mean;
// returns 0.5
By default, a = 0.0
and b = 1.0
. To create a distribution having a different a
(minimum support) and b
(maximum support), provide the corresponding arguments.
var arcsine = new Arcsine( 2.0, 4.0 );
var mu = arcsine.mean;
// returns 3.0
An arcsine distribution object has the following properties and methods...
Minimum support of the distribution. a
must be a number less than b
.
var arcsine = new Arcsine();
var a = arcsine.a;
// returns 0.0
arcsine.a = 0.5;
a = arcsine.a;
// returns 0.5
Maximum support of the distribution. b
must be a number greater than a
.
var arcsine = new Arcsine( 2.0, 4.0 );
var b = arcsine.b;
// returns 4.0
arcsine.b = 3.0;
b = arcsine.b;
// returns 3.0
Returns the differential entropy.
var arcsine = new Arcsine( 4.0, 12.0 );
var entropy = arcsine.entropy;
// returns ~1.838
Returns the excess kurtosis.
var arcsine = new Arcsine( 4.0, 12.0 );
var kurtosis = arcsine.kurtosis;
// returns -1.5
Returns the expected value.
var arcsine = new Arcsine( 4.0, 12.0 );
var mu = arcsine.mean;
// returns 8.0
Returns the median.
var arcsine = new Arcsine( 4.0, 12.0 );
var median = arcsine.median;
// returns 8.0
Returns the mode.
var arcsine = new Arcsine( 4.0, 12.0 );
var mode = arcsine.mode;
// returns 4.0
Returns the skewness.
var arcsine = new Arcsine( 4.0, 12.0 );
var skewness = arcsine.skewness;
// returns 0.0
Returns the standard deviation.
var arcsine = new Arcsine( 4.0, 12.0 );
var s = arcsine.stdev;
// returns ~2.828
Returns the variance.
var arcsine = new Arcsine( 4.0, 12.0 );
var s2 = arcsine.variance;
// returns 8.0
Evaluates the cumulative distribution function (CDF).
var arcsine = new Arcsine( 2.0, 4.0 );
var y = arcsine.cdf( 2.5 );
// returns ~0.333
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var arcsine = new Arcsine( 2.0, 4.0 );
var y = arcsine.logcdf( 2.5 );
// returns ~-1.1
Evaluates the natural logarithm of the probability density function (PDF).
var arcsine = new Arcsine( 2.0, 4.0 );
var y = arcsine.logpdf( 2.5 );
// returns ~-1.0
Evaluates the probability density function (PDF).
var arcsine = new Arcsine( 2.0, 4.0 );
var y = arcsine.pdf( 2.5 );
// returns ~0.368
Evaluates the quantile function at probability p
.
var arcsine = new Arcsine( 2.0, 4.0 );
var y = arcsine.quantile( 0.5 );
// returns 3.0
y = arcsine.quantile( 1.9 );
// returns NaN
var Arcsine = require( '@stdlib/stats-base-dists-arcsine-ctor' );
var arcsine = new Arcsine( 2.0, 4.0 );
var mu = arcsine.mean;
// returns 3.0
var median = arcsine.median;
// returns 3.0
var s2 = arcsine.variance;
// returns 0.5
var y = arcsine.cdf( 2.5 );
// returns ~0.333
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.