STARK is a proof system. It uses cutting-edge cryptography to provide poly-logarithmic verification resources and proof size, with minimal and post-quantum-secure assumptions.
This repository contains a prover and a verifier for STARKs, and in particular for the CPU AIR underlying the CairoZero programming language.
For now, only Linux platforms are supported.
The root directory contains a dedicated Dockerfile which automatically builds the package and runs the unit tests on a simulated machine. You should have docker installed (see https://docs.docker.com/get-docker/).
Clone the repository:
git clone https://github.com/starkware-libs/stone-prover.git
Build the docker image:
cd stone-prover
docker build --tag prover .
This will run an end-to-end test with an example cairo program. Once the docker image is built, you can fetch the prover and verifier executables using:
container_id=$(docker create prover)
docker cp -L ${container_id}:/bin/cpu_air_prover .
docker cp -L ${container_id}:/bin/cpu_air_verifier .
Navigate to the example test directory (e2e_test/Cairo
):
cd e2e_test/Cairo
Install cairo-vm/cairo1-run
(see further instructions in the
cairo-vm repository):
git clone https://github.com/lambdaclass/cairo-vm.git
cd cairo-vm/cairo1-run
make deps
Compile and run the program to generate the prover input files:
cargo run ../../fibonacci.cairo \
--layout=small \
--air_public_input=fibonacci_public_input.json \
--air_private_input=fibonacci_private_input.json \
--trace_file=fibonacci_trace.bin \
--memory_file=fibonacci_memory.bin \
--proof_mode
Run the prover:
cpu_air_prover \
--out_file=fibonacci_proof.json \
--private_input_file=fibonacci_private_input.json \
--public_input_file=fibonacci_public_input.json \
--prover_config_file=../../cpu_air_prover_config.json \
--parameter_file=../../cpu_air_params.json
The proof is now available in the file fibonacci_proof.json
.
Finally, run the verifier to verify the proof:
cpu_air_verifier --in_file=fibonacci_proof.json && echo "Successfully verified example proof."
Note: The verifier only checks that the proof is consistent with the public input section that appears in the proof file. The public input section itself is not checked. For example, the verifier does not check what Cairo program is being proved, or that the builtins memory segments are of valid size. These things need to be checked externally.
To run and prove the example program fibonacci.cairo
,
install cairo-lang
version 0.13.2 (see further instructions in the
cairo-lang repository):
pip install cairo-lang==0.13.2
Navigate to the example test directory (e2e_test/CairoZero
):
cd e2e_test/CairoZero
Compile fibonacci.cairo
:
cairo-compile fibonacci.cairo --output fibonacci_compiled.json --proof_mode
Run the compiled program to generate the prover input files:
cairo-run \
--program=fibonacci_compiled.json \
--layout=small \
--program_input=fibonacci_input.json \
--air_public_input=fibonacci_public_input.json \
--air_private_input=fibonacci_private_input.json \
--trace_file=fibonacci_trace.bin \
--memory_file=fibonacci_memory.bin \
--print_output \
--proof_mode
Run the prover:
cpu_air_prover \
--out_file=fibonacci_proof.json \
--private_input_file=fibonacci_private_input.json \
--public_input_file=fibonacci_public_input.json \
--prover_config_file=cpu_air_prover_config.json \
--parameter_file=cpu_air_params.json
The proof is now available in the file fibonacci_proof.json
.
Finally, run the verifier to verify the proof:
cpu_air_verifier --in_file=fibonacci_proof.json && echo "Successfully verified example proof."
Note: The verifier only checks that the proof is consistent with the public input section that appears in the proof file. The public input section itself is not checked. For example, the verifier does not check what CairoZero program is being proved, or that the builtins memory segments are of valid size. These things need to be checked externally.
The number of steps affects the size of the trace.
Such changes may require modification of cpu_air_params.json
.
Specifically, the following equation must be satisfied.
log₂(last_layer_degree_bound) + ∑fri_step_list = log₂(#steps) + 4
For instance, assuming a fixed last_layer_degree_bound
,
a larger number of steps requires changes to the fri_step_list
to maintain the equality.
FRI steps should typically be in the range 2-4; the degree bound should be in the range 4-7.
The constant 4 that appears in the equation is hardcoded log₂(trace_rows_per_step) = log₂(16) = 4
.