Skip to content

A spherical volume rendering algorithm that performs ray casting through a spherical voxel grid.

License

Notifications You must be signed in to change notification settings

spherical-volume-rendering/svr-algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Voxel Traversal Algorithm Over Spherical Grids

About

spherical-volume-rendering codecov

This project extends the yt open-source data analysis and visualization package, providing an enhanced, integrated user interface for data exploration and enabling the visualization of physical data that comes from non-cartesian grids. Currently, yt implements a fast voxel traversal over a cartesian coordinate grid. The objective is to develop a fast voxel traversal over a spherical coordinate grid, based on ideas from Amanatides and Woo’s seminal paper on fast voxel traversal for ray tracing.

Authors

  • Chris Gyurgyik (cpg49 at cornell.edu)
  • Ariel Kellison (ak2485 at cornell.edu)
  • Youhan Yuan (yy435 at cornell.edu)

Initial Benchmarks*

# Rays # Voxels CPU Mean (ms) CPU Median (ms) CPU Std Dev (ms)
128^2 64^3 103 103 1.1
256^2 64^3 407 406 1.3
512^2 64^3 1616 1613 2.3
128^2 128^3 201 201 0.8
256^2 128^3 796 794 2.4
512^2 128^3 3187 3180 8.3

*Run on (8 X 1400 MHz CPUs).
CPU Caches:
L1 Data 32 KiB (x4), L1 Instruction 32 KiB (x4), L2 Unified 256 KiB (x4), L3 Unified 6144 KiB (x1)

C++ Build Requirements

To run the benchmarks:

  1. Install CMake version 3.7 or higher (https://cmake.org/)
  2. Clone the repository and build the benchmarks:
git clone https://github.com/spherical-volume-rendering/svr-algorithm.git && 
cd svr-algorithm/cpp/benchmarks && mkdir build && cd build && cmake .. && make
  1. Run the benchmarks:
cd .. && ./bin/benchmark_svr

C++ Example

#include "spherical_volume_rendering_util.h"

const BoundVec3 sphere_center(0.0, 0.0, 0.0);
const double sphere_max_radius = 10.0;
const svr::SphereBound min_bound = { .radial=0.0, .polar=0.0, .azimuthal=0.0 };
const svr::SphereBound max_bound = { .radial=sphere_max_radius, .polar=2*M_PI, .azimuthal=2*M_PI };
const svr::SphericalVoxelGrid grid(min_bound, max_bound, 
                                   /*num_radial_sections=*/4, 
                                   /*num_polar_sections=*/4,
                                   /*num_azimuthal_sections=*/4, 
                                   sphere_center);
const BoundVec3 ray_origin(-13.0, -13.0, -13.0);
const FreeVec3 ray_direction(1.0, 1.0, 1.0);
const Ray ray(ray_origin, ray_direction);
const auto voxels = svr::walkSphericalVolume(ray, grid, /*t_begin=*/0.0, /*t_end=*/30.0);

Cython Build Requirements

Cython Example

#   Compile code before use:
#   python3 cython_SVR_setup.py build_ext --inplace

import cython_SVR
import numpy as np

ray_origin    = np.array([-13.0, -13.0, -13.0])
ray_direction = np.array([1.0, 1.0, 1.0])
sphere_center = np.array([0.0, 0.0, 0.0])
sphere_max_radius      = 10.0
num_radial_sections    =  4
num_polar_sections     =  4
num_azimuthal_sections =  4
min_bound = np.array([0.0, 0.0, 0.0])
max_bound = np.array([sphere_max_radius, 2 * np.pi, 2 * np.pi])
t_begin   = 0.0
t_end     = 30.0
voxels = cython_SVR.walk_spherical_volume(ray_origin, ray_direction, min_bound, max_bound, 
                                          num_radial_sections, num_polar_sections, 
                                          num_azimuthal_sections, sphere_center, t_begin, t_end)

# Expected voxels: [ [1, 2, 2], [2, 2, 2], [3, 2, 2], [4, 2, 2],
#                    [4, 0, 0], [3, 0, 0], [2, 0, 0], [1, 0, 0] ]

Project Links

References

  • John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray tracing. In Eurographics ’87, pages 3–10, 1987.
  • James Foley, Andries van Dam, Steven Feiner & John Hughes, "Clipping Lines" in Computer Graphics (3rd Edition) (2013)
  • Paul S. Heckbert, editor. Graphics Gems IV. Academic Press Professional, Inc., USA, 1994.
  • Donald. E. Knuth, 1998, Addison-Wesley Longman, Inc., ISBN 0-201-89684-2, Addison-Wesley Professional; 3rd edition.
  • Joseph O'Rourke, "Search and Intersection" in Computational Geometry in C (2nd Edition) (1998)