-
Notifications
You must be signed in to change notification settings - Fork 23
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add dimension correlation calculation
- Loading branch information
Showing
2 changed files
with
108 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
from collections import defaultdict | ||
from typing import cast | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import rich | ||
from scipy import stats | ||
|
||
from sotopia.database import EpisodeLog, AnnotationForEpisode | ||
|
||
|
||
def get_dimension_correlation(dimension: str) -> dict[str, float]: | ||
annotated_episodes = [AnnotationForEpisode.get(annotation_pk) for annotation_pk in AnnotationForEpisode.all_pks()] | ||
relevant_episode_ids = [annotation.episode for annotation in annotated_episodes] | ||
|
||
# get relevant episodes | ||
relevant_episodes = [ | ||
EpisodeLog.get(relevant_episode_id) | ||
for relevant_episode_id in relevant_episode_ids | ||
] | ||
|
||
# search for the corresponding episode in tag "reeval_gpt4_improved_prompts" | ||
tagged_episodes = EpisodeLog.find(EpisodeLog.tag == "reeval_llama2").all() | ||
ordered_tagged_episodes = [] | ||
for relevant_episode in relevant_episodes: | ||
for tagged_episode in tagged_episodes: | ||
assert isinstance(tagged_episode, EpisodeLog) | ||
if ( | ||
relevant_episode.environment == tagged_episode.environment | ||
and relevant_episode.agents == tagged_episode.agents | ||
and relevant_episode.models == tagged_episode.models | ||
): | ||
ordered_tagged_episodes.append(tagged_episode) | ||
break | ||
relevant_episodes = ordered_tagged_episodes | ||
|
||
# check the data is present | ||
with_dimension_list = [ | ||
not isinstance(relevant_episode.rewards[0], float) | ||
for relevant_episode in relevant_episodes | ||
] | ||
|
||
# list of episodes for which dimension is present | ||
relevant_episodes_with_dimension = [ | ||
relevant_episode | ||
for relevant_episode, with_dimension in zip( | ||
relevant_episodes, with_dimension_list | ||
) | ||
if with_dimension | ||
] | ||
|
||
for annotation in annotated_episodes: | ||
human_rewards = annotation.rewards | ||
human_rewards_list: list[tuple[float, float]] = [] | ||
|
||
human_rewards_list.append( | ||
( | ||
float(human_rewards[0][1][dimension]), # type: ignore | ||
float(human_rewards[1][1][dimension]), # type: ignore | ||
) | ||
) | ||
dimension_scores_agent1 = [human_rewards[0] for human_rewards in human_rewards_list] | ||
dimension_scores_agent2 = [human_rewards[1] for human_rewards in human_rewards_list] | ||
|
||
dimension_machine = dimension | ||
if dimension == "financial": | ||
dimension_machine = "financial_and_material_benefits" | ||
elif dimension == "socialrules": | ||
dimension_machine = "social_rules" | ||
|
||
if dimension == "overall": | ||
dimension_scores_agent1_machine = [relevant_episode.rewards[0][0] for relevant_episode in relevant_episodes_with_dimension] # type: ignore | ||
dimension_scores_agent2_machine = [relevant_episode.rewards[1][0] for relevant_episode in relevant_episodes_with_dimension] # type: ignore | ||
else: | ||
dimension_scores_agent1_machine = [relevant_episode.rewards[0][1][dimension_machine] for relevant_episode in relevant_episodes_with_dimension] # type: ignore | ||
dimension_scores_agent2_machine = [relevant_episode.rewards[1][1][dimension_machine] for relevant_episode in relevant_episodes_with_dimension] # type: ignore | ||
x = dimension_scores_agent2 + dimension_scores_agent1 | ||
y = dimension_scores_agent2_machine + dimension_scores_agent1_machine | ||
# average | ||
# x = [agent1 + agent2 for agent1, agent2 in zip(dimension_scores_agent1, dimension_scores_agent2)] | ||
# y = [agent1 + agent2 for agent1, agent2 in zip(dimension_scores_agent1_machine, dimension_scores_agent2_machine)] | ||
res = stats.pearsonr(x, y) | ||
spearman_res = stats.spearmanr(x, y) | ||
mse = ((np.array(x) - np.array(y)) ** 2).mean() | ||
|
||
return { | ||
"pearson_correlation": res.statistic, | ||
"pearson_pvalue": res.pvalue, | ||
"spearman_correlation": spearman_res.correlation, | ||
"spearman_pvalue": spearman_res.pvalue, | ||
"mse": mse, | ||
} | ||
|
||
relevant_dimension = [ | ||
"believability", | ||
"relationship", | ||
"knowledge", | ||
"secret", | ||
"socialrules", | ||
"financial", | ||
"goal", | ||
] | ||
|
||
correlation_dict = {} | ||
for dimension in relevant_dimension: | ||
correlation_dict[dimension] = get_dimension_correlation(dimension) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters