-
Notifications
You must be signed in to change notification settings - Fork 34
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #169 from sony/feature/20190527-lars
LARS (Layer-wise Adaptive Rate Scaling)
- Loading branch information
Showing
3 changed files
with
194 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,6 +2,8 @@ Sgd: | |
float: [float] | ||
Momentum: | ||
float: [float] | ||
Lars: | ||
float: [float] | ||
Adadelta: | ||
float: [float] | ||
Adagrad: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
// Copyright (c) 2017 Sony Corporation. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#ifndef __NBLA_CUDA_SOLVER_LARS_HPP__ | ||
#define __NBLA_CUDA_SOLVER_LARS_HPP__ | ||
|
||
#include <nbla/cuda/cuda.hpp> | ||
#include <nbla/solver/lars.hpp> | ||
|
||
namespace nbla { | ||
|
||
template <typename T> class LarsCuda : public Lars<T> { | ||
public: | ||
explicit LarsCuda(const Context &ctx, float lr, float momentum, | ||
float coefficient, float eps) | ||
: Lars<T>(ctx, lr, momentum, coefficient, eps) {} | ||
virtual ~LarsCuda() {} | ||
virtual string name() { return "LarsCuda"; } | ||
virtual vector<string> allowed_array_classes() { | ||
return SingletonManager::get<Cuda>()->array_classes(); | ||
} | ||
|
||
protected: | ||
std::vector<cudaStream_t> streams_; | ||
void update_impl(const string &key, VariablePtr param) override; | ||
NBLA_DECL_CHECK_INF_GRAD(); | ||
NBLA_DECL_CHECK_NAN_GRAD(); | ||
NBLA_DECL_CHECK_INF_OR_NAN_GRAD(); | ||
NBLA_DECL_SCALE_GRAD(); | ||
}; | ||
} | ||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
// Copyright (c) 2017 Sony Corporation. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include <cassert> | ||
#include <queue> | ||
|
||
#include <nbla/cuda/array/cuda_array.hpp> | ||
#include <nbla/cuda/common.hpp> | ||
#include <nbla/cuda/cublas.hpp> | ||
#include <nbla/cuda/cuda.hpp> | ||
#include <nbla/cuda/solver/lars.hpp> | ||
#include <nbla/cuda/utils/block_reduce.cuh> | ||
|
||
#include "./mixed_precision_training.cuh" | ||
#include "./weight_decay.cuh" | ||
|
||
namespace nbla { | ||
|
||
constexpr int blocks = 1024; /* max blocks */ | ||
|
||
template <typename T> | ||
__global__ void kernel_reduce_pow2_per_block(const int N, const T *x1, T *buff1, | ||
const T *x2, T *buff2) { | ||
typedef typename CudaTypeForceFloat<T>::type AccT; | ||
AccT thread_data1 = 0; | ||
NBLA_CUDA_KERNEL_LOOP(i, N) { thread_data1 += (AccT)x1[i] * (AccT)x1[i]; } | ||
thread_data1 = blockReduceSum(thread_data1); | ||
if (threadIdx.x == 0) { | ||
buff1[blockIdx.x] = thread_data1; | ||
} | ||
|
||
AccT thread_data2 = 0; | ||
NBLA_CUDA_KERNEL_LOOP(i, N) { thread_data2 += (AccT)x2[i] * (AccT)x2[i]; } | ||
thread_data2 = blockReduceSum(thread_data2); | ||
if (threadIdx.x == 0) { | ||
buff2[blockIdx.x] = thread_data2; | ||
} | ||
} | ||
template <typename T> | ||
__global__ void kernel_reduce_per_block(const int N, const T *x1, T *buff1, | ||
const T *x2, T *buff2) { | ||
typedef typename CudaTypeForceFloat<T>::type AccT; | ||
AccT thread_data1 = 0; | ||
NBLA_CUDA_KERNEL_LOOP(i, N) { thread_data1 += (AccT)x1[i]; } | ||
thread_data1 = blockReduceSum(thread_data1); | ||
if (threadIdx.x == 0) { | ||
buff1[blockIdx.x] = thread_data1; | ||
} | ||
|
||
AccT thread_data2 = 0; | ||
NBLA_CUDA_KERNEL_LOOP(i, N) { thread_data2 += (AccT)x2[i]; } | ||
thread_data2 = blockReduceSum(thread_data2); | ||
if (threadIdx.x == 0) { | ||
buff2[blockIdx.x] = thread_data2; | ||
} | ||
} | ||
template <typename T> | ||
void sq_sum(cudaStream_t stream, const int num, const T *data, T *buff1, | ||
T *sq_data, const T *grad, T *buff2, T *sq_grad) { | ||
if (num >= 1024) { | ||
int blocks = min(NBLA_CUDA_GET_BLOCKS(num), /*max blocks*/ 1024); | ||
kernel_reduce_pow2_per_block<<<blocks, NBLA_CUDA_NUM_THREADS, 0, stream>>>( | ||
num, data, buff1, grad, buff2); | ||
kernel_reduce_per_block<<<1, 1024, 0, stream>>>(blocks, buff1, sq_data, | ||
buff2, sq_grad); | ||
} else { | ||
kernel_reduce_pow2_per_block<<<1, 1024, 0, stream>>>(num, data, sq_data, | ||
grad, sq_grad); | ||
} | ||
} | ||
|
||
template <typename T> | ||
__global__ void kernel_lars_update(const int num, T *data, const T *grad, T *v, | ||
T *d_sq, T *g_sq, float lr, float momentum, | ||
float decay_rate, float coefficient, | ||
float eps) { | ||
/* Calculate L2 norm */ | ||
auto g_norm = std::sqrt(*g_sq); | ||
auto d_norm = std::sqrt(*d_sq); | ||
|
||
/* Calculate local learning rate */ | ||
auto x = g_norm + decay_rate * d_norm; | ||
if (x < eps) { | ||
x += eps; | ||
} | ||
float local_lr = 1; | ||
if (d_norm >= eps) { | ||
local_lr = coefficient * d_norm / x; | ||
} | ||
|
||
// Update weight and momentum | ||
NBLA_CUDA_KERNEL_LOOP(idx, num) { | ||
v[idx] = momentum * v[idx] + | ||
lr * local_lr * (grad[idx] + decay_rate * data[idx]); | ||
data[idx] -= v[idx]; | ||
} | ||
} | ||
|
||
template <typename T> | ||
void LarsCuda<T>::update_impl(const string &key, VariablePtr param) { | ||
cuda_set_device(std::stoi(this->ctx_.device_id)); | ||
|
||
typedef typename CudaType<T>::type Tc; | ||
dtypes dtype = get_dtype<Tc>(); | ||
auto g_sq_arr = make_shared<NdArray>(Shape_t{1}); | ||
auto d_sq_arr = make_shared<NdArray>(Shape_t{1}); | ||
Tc *g_sq = g_sq_arr->cast(dtype, this->ctx_)->pointer<Tc>(); | ||
Tc *d_sq = d_sq_arr->cast(dtype, this->ctx_)->pointer<Tc>(); | ||
|
||
shared_ptr<CudaCachedArray> d_buff_arr = | ||
make_shared<CudaCachedArray>(blocks, dtype, this->ctx_); | ||
Tc *d_buff = d_buff_arr->pointer<Tc>(); | ||
shared_ptr<CudaCachedArray> g_buff_arr = | ||
make_shared<CudaCachedArray>(blocks, dtype, this->ctx_); | ||
Tc *g_buff = g_buff_arr->pointer<Tc>(); | ||
|
||
Size_t size = param->size(); | ||
VariablePtr v_var = this->states_.at(key).pstate["v"]; | ||
Tc *v = v_var->cast_data_and_get_pointer<Tc>(this->ctx_); | ||
Tc *data = param->cast_data_and_get_pointer<Tc>(this->ctx_); | ||
const Tc *grad = param->get_grad_pointer<Tc>(this->ctx_); | ||
|
||
/* calculate squared sum */ | ||
sq_sum(nullptr, size, data, d_buff, d_sq, grad, g_buff, g_sq); | ||
|
||
NBLA_CUDA_LAUNCH_KERNEL_SIMPLE( | ||
kernel_lars_update, size, data, grad, v, d_sq, g_sq, this->lr_, | ||
this->momentum_, this->decay_rate_, this->coefficient_, this->eps_); | ||
|
||
auto &t = this->states_.at(key).t; | ||
t = std::min(t + 1, std::numeric_limits<uint32_t>::max() - 1); | ||
} | ||
|
||
NBLA_DEF_CHECK_INF_GRAD(LarsCuda, check_inf_grad_cuda); | ||
NBLA_DEF_CHECK_NAN_GRAD(LarsCuda, check_nan_grad_cuda); | ||
NBLA_DEF_CHECK_INF_OR_NAN_GRAD(LarsCuda, check_inf_or_nan_grad_cuda); | ||
NBLA_DEF_SCALE_GRAD(LarsCuda, scale_grad_impl_cuda); | ||
} |