Estimator of Subsidence Trend and Seasonality (ESTS) is an open-source integrated framework and model that combines Seasonality and trend decomposition (STD), Geographically Weighted Regression (GWR) & Random Forest (RF) models for identifying and estimating the trend and seasonality in subsidence by only using groundwater (hydraulic head) observations as input variable.
Decomposition_main.py: - Conducts Time series decomposition of original hydraulic head (h) & deformation (s) time series dataset using the Seasonal-Trend Decomposition Procedure Based on Loess (STL) approach. Furthermore, this code also computes the Relative Importance (RI) of each decomposed components i.e., Trend, Seasonality, and Residue.
2. Model for the Non-trend (Seasonality) Dataset of Subsidence (snon-trend) and Groundwater (hnon-trend)
Non-trend Model_main.ipynb: - Estimates the non-trend subsidence (snon-trend) through non-trend groundwater (hnon-trend) using the Random Forest (RF) model.
snon-trend = f(hnon-trend)
Change_Estimator_main.m: - Estimates subsidence change (Δs) through hydraulic head change (Δh) using GWR. Also provides spatial Intercepts & Coefficients for each Monitoring Wells.
Δs = f(Δh)
Trend Estimation.xlsx: - Provides calculation to estimate strend using the Δs and snon-trend from "Change_Estimator_main.m" and "Non-trend Model_main.ipynb", respectively in 4 sample wells.
OS: - Microsoft Windows 10 Home
CPU: - Inter(R) Core(TM) i7 7700HQ 2.80 GHz
RAM: - 16.00 GB
-
The "Decomposition_main.py", "Change_Estimator_main.m", and "Non-trend Model_main.ipynb" were tested on Python Programming Language (Version 3.9)
-
The "Change_Estimator_main.m" was tested on MATLAB (2022a) Environment.
- Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324
- Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I., 1990. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 6, 3–73.
- LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. Chapman and Hall/CRC.