Skip to content

This project implement end to end realtime vietnamese speech recognition with PhoWhisper in Backend and frontend in React Native

Notifications You must be signed in to change notification settings

sonhm3029/Realtime-Vietnamese-ASR-React-Native-and-Whisper

Repository files navigation

Frontend

  • react-native-live-audio-stream: For get audio buffer to make realtime speech recognition

  • socket.io-client: For send and receive request

The parameters config is as follow:

 LiveAudioStream.init({
      sampleRate: 16000,
      channels: 1,
      bitsPerSample: 16,
      audioSource: 6,
      bufferSize: 14400,
    });
  • sampleRate: default sample rate (adjust as you need)
  • channels: default
  • bitsPerSample: default
  • audioSource: follow author of the package for speech recognition
  • bufferSize: adjust for suitable backend

I have that config follow the experiment speech recognition in realtime with only python

Backend

transcriber = pipeline(
    "automatic-speech-recognition", model="vinai/PhoWhisper-tiny", device="cpu"
)


import sys
import numpy as np


def transcribe(chunk_length_s=5.0, stream_chunk_s=0.3):
    sampling_rate = transcriber.feature_extractor.sampling_rate

    mic = ffmpeg_microphone_live(
        sampling_rate=sampling_rate,
        chunk_length_s=chunk_length_s,
        stream_chunk_s=stream_chunk_s,
    )
    
    print("Start speaking...")
    for item in transcriber(mic):
        sys.stdout.write("\033[K")
        print(item["text"], end="\r")
        print(item)
        if not item["partial"][0]:
            break

    return item["text"]

I adjust the bufferSize, experiment its until i have speech recognition run OK.

With socket io

Below is the code that receive audio buffer chunk from client to process:

cache_chunk = {}
@socketio.on('audio_chunk')
def handle_audio_chunk(client_id, data):
    global cache_chunk
    try:
        print(f"User {client_id} join to get")
        audio_chunk = np.frombuffer(data, dtype=np.int16).astype(np.float32) /255.0
        ## Check if slient case, for better, using VAD. Examples: pyannote
        if(np.max(audio_chunk) < 12):
            return
        if client_id not in cache_chunk:
            emit(f"error_{client_id}", "Something wrong has been occured, reload and try again!")
            return
        
        cache_chunk[client_id].append(audio_chunk)
        audio_chunk = np.concatenate(cache_chunk[client_id])
        # Use the correct format for the transcriber pipeline
        transcription = transcriber({"raw": audio_chunk, "sampling_rate": 16000})["text"]
        print(transcription)
        emit(f"transcription_{client_id}", {"text": transcription})
    except Exception as e:
        print(f"Error processing audio chunk: {e}")
        if client_id in cache_chunk:
            del cache_chunk[client_id]
        emit(f"error_{client_id}", str(e))

About

This project implement end to end realtime vietnamese speech recognition with PhoWhisper in Backend and frontend in React Native

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published