Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactoring dgram recycling #146

Merged
merged 5 commits into from
Jun 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions colabdesign/af/alphafold/model/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -308,7 +308,7 @@ def model_config(name: str) -> ml_collections.ConfigDict:
'subbatch_size': 4,
'use_remat': False,
'zero_init': True,
'use_dgram': False
'use_dgram_pred': False,
},
'heads': {
'distogram': {
Expand Down Expand Up @@ -537,7 +537,7 @@ def model_config(name: str) -> ml_collections.ConfigDict:
'subbatch_size': 4,
'use_remat': False,
'zero_init': True,
'use_dgram': False
'use_dgram_pred': False,
},
'heads': {
'distogram': {
Expand Down
35 changes: 18 additions & 17 deletions colabdesign/af/alphafold/model/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,20 +150,28 @@ def __init__(self, config, name='alphafold'):
def __call__(self, batch, **kwargs):
"""Run the AlphaFold model."""
impl = AlphaFoldIteration(self.config, self.global_config)

def get_prev(ret):
def get_prev(ret, use_dgram=False):
new_prev = {
'prev_msa_first_row': ret['representations']['msa_first_row'],
'prev_pair': ret['representations']['pair'],
'prev_pos': ret['structure_module']['final_atom_positions']
}
if self.global_config.use_dgram:
new_prev['prev_dgram'] = ret["distogram"]["logits"]
if use_dgram:
if self.global_config.use_dgram_pred:
dgram = jax.nn.softmax(ret["distogram"]["logits"])
dgram_map = jax.nn.one_hot(jnp.repeat(jnp.append(0,jnp.arange(15)),4),15).at[:,0].set(0)
new_prev['prev_dgram'] = dgram @ dgram_map
else:
pos = ret['structure_module']['final_atom_positions']
prev_pseudo_beta = pseudo_beta_fn(batch['aatype'], pos, None)
new_prev['prev_dgram'] = dgram_from_positions(prev_pseudo_beta, min_bin=3.25, max_bin=20.75, num_bins=15)
else:
new_prev['prev_pos'] = ret['structure_module']['final_atom_positions']

return new_prev

prev = batch.pop("prev")
ret = impl(batch={**batch, **prev})
ret["prev"] = get_prev(ret)
ret["prev"] = get_prev(ret, use_dgram="prev_dgram" in prev)
return ret

class TemplatePairStack(hk.Module):
Expand Down Expand Up @@ -1383,6 +1391,7 @@ def __call__(self, batch, safe_key=None):
msa_feat = batch['msa_feat'].astype(dtype)
target_feat = jnp.pad(batch["target_feat"].astype(dtype),[[0,0],[1,1]])
preprocess_1d = common_modules.Linear(c.msa_channel, name='preprocess_1d')(target_feat)
preprocess_1d = jnp.where(target_feat.sum(-1,keepdims=True) == 0, 0, preprocess_1d)
preprocess_msa = common_modules.Linear(c.msa_channel, name='preprocess_msa')(msa_feat)
msa_activations = preprocess_1d[None] + preprocess_msa

Expand All @@ -1397,19 +1406,11 @@ def __call__(self, batch, safe_key=None):
# Jumper et al. (2021) Suppl. Alg. 2 "Inference" line 6
# Jumper et al. (2021) Suppl. Alg. 32 "RecyclingEmbedder"

if gc.use_dgram:
# use predicted distogram input (from Sergey)
dgram = jax.nn.softmax(batch["prev_dgram"])
dgram_map = jax.nn.one_hot(jnp.repeat(jnp.append(0,jnp.arange(15)),4),15).at[:,0].set(0)
dgram = dgram @ dgram_map

if "prev_dgram" in batch:
dgram = batch["prev_dgram"]
else:
# use predicted position input
prev_pseudo_beta = pseudo_beta_fn(batch['aatype'], batch['prev_pos'], None)
if c.backprop_dgram:
dgram = dgram_from_positions_soft(prev_pseudo_beta, temp=c.backprop_dgram_temp, **c.prev_pos)
else:
dgram = dgram_from_positions(prev_pseudo_beta, **c.prev_pos)
dgram = dgram_from_positions(prev_pseudo_beta, **c.prev_pos)
dgram = dgram.astype(dtype)
pair_activations += common_modules.Linear(c.pair_channel, name='prev_pos_linear')(dgram)

Expand Down
30 changes: 23 additions & 7 deletions colabdesign/af/alphafold/model/modules_multimer.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,22 +178,34 @@ def __call__(
assert isinstance(batch, dict)
num_res = batch['aatype'].shape[0]

def get_prev(ret):
def get_prev(ret, use_dgram=False):
new_prev = {
'prev_pos': ret['structure_module']['final_atom_positions'],
'prev_msa_first_row': ret['representations']['msa_first_row'],
'prev_pair': ret['representations']['pair'],
}
if use_dgram:
if self.global_config.use_dgram_pred:
dgram = jax.nn.softmax(ret["distogram"]["logits"])
dgram_map = jax.nn.one_hot(jnp.repeat(jnp.append(0,jnp.arange(15)),4),15).at[:,0].set(0)
new_prev['prev_dgram'] = dgram @ dgram_map
else:
pos = ret['structure_module']['final_atom_positions']
prev_pseudo_beta = modules.pseudo_beta_fn(batch['aatype'], pos, None)
new_prev['prev_dgram'] = modules.dgram_from_positions(prev_pseudo_beta, min_bin=3.25, max_bin=20.75, num_bins=15)
else:
new_prev['prev_pos'] = ret['structure_module']['final_atom_positions']

return new_prev

def apply_network(prev, safe_key):
recycled_batch = {**batch, **prev}
return impl(
batch=recycled_batch,
safe_key=safe_key)

ret = apply_network(prev=batch.pop("prev"), safe_key=safe_key)
ret["prev"] = get_prev(ret)

prev = batch.pop("prev")
ret = apply_network(prev=prev, safe_key=safe_key)
ret["prev"] = get_prev(ret, use_dgram="prev_dgram" in prev)

if not return_representations:
del ret['representations']
Expand Down Expand Up @@ -315,8 +327,12 @@ def __call__(self, batch, safe_key=None):
mask_2d = mask_2d.astype(dtype)

if c.recycle_pos:
prev_pseudo_beta = modules.pseudo_beta_fn(batch['aatype'], batch['prev_pos'], None)
dgram = modules.dgram_from_positions(prev_pseudo_beta, **self.config.prev_pos)
if "prev_dgram" in batch:
dgram = batch["prev_dgram"]
else:
prev_pseudo_beta = modules.pseudo_beta_fn(batch['aatype'], batch['prev_pos'], None)
dgram = modules.dgram_from_positions(prev_pseudo_beta, **self.config.prev_pos)

dgram = dgram.astype(dtype)
pair_activations += common_modules.Linear(c.pair_channel, name='prev_pos_linear')(dgram)

Expand Down
51 changes: 36 additions & 15 deletions colabdesign/af/design.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import jax.numpy as jnp
import numpy as np
from colabdesign.af.alphafold.common import residue_constants
from colabdesign.af.utils import dgram_from_positions
from colabdesign.shared.utils import copy_dict, update_dict, Key, dict_to_str, to_float, softmax, categorical, to_list, copy_missing

####################################################
Expand Down Expand Up @@ -158,24 +159,42 @@ def _recycle(self, model_params, num_recycles=None, backprop=True):
else:
L = self._inputs["residue_index"].shape[0]

# intialize previous
# intialize previous inputs
if "prev" not in self._inputs or a["clear_prev"]:
prev = {'prev_msa_first_row': np.zeros([L,256]),
'prev_pair': np.zeros([L,L,128])}

if a["use_initial_guess"] and "batch" in self._inputs:
prev["prev_pos"] = self._inputs["batch"]["all_atom_positions"]
'prev_pair': np.zeros([L,L,128])}

# initialize coordinates
# TODO: add support for the 'partial' protocol
if "batch" in self._inputs:
ini_seq = self._inputs["batch"]["aatype"]
ini_pos = self._inputs["batch"]["all_atom_positions"]

# via evoformer
if a["use_initial_guess"]:
# via distogram or positions
if a["use_dgram"] or a["use_dgram_pred"]:
prev["prev_dgram"] = dgram_from_positions(positions=ini_pos,
seq=ini_seq, num_bins=15, min_bin=3.25, max_bin=20.75)
else:
prev["prev_pos"] = ini_pos
else:
if a["use_dgram"] or a["use_dgram_pred"]:
prev["prev_dgram"] = np.zeros([L,L,15])
else:
prev["prev_pos"] = np.zeros([L,37,3])

# via structure module
if a["use_initial_atom_pos"]:
self._inputs["initial_atom_pos"] = ini_pos

else:
prev["prev_pos"] = np.zeros([L,37,3])

if a["use_dgram"]:
# TODO: add support for initial_guess + use_dgram
prev["prev_dgram"] = np.zeros([L,L,64])

if a["use_initial_atom_pos"]:
if "batch" in self._inputs:
self._inputs["initial_atom_pos"] = self._inputs["batch"]["all_atom_positions"]
# if batch not defined, initialize with zeros
if a["use_dgram"] or a["use_dgram_pred"]:
prev["prev_dgram"] = np.zeros([L,L,15])
else:
prev["prev_pos"] = np.zeros([L,37,3])
if a["use_initial_atom_pos"]:
self._inputs["initial_atom_pos"] = np.zeros([L,37,3])

self._inputs["prev"] = prev
Expand All @@ -196,9 +215,11 @@ def _recycle(self, model_params, num_recycles=None, backprop=True):
else:
aux = self._single(model_params, backprop)
grad.append(jax.tree_map(lambda x:x*m, aux["grad"]))

# update previous inputs
self._inputs["prev"] = aux["prev"]
if a["use_initial_atom_pos"]:
self._inputs["initial_atom_pos"] = aux["prev"]["prev_pos"]
self._inputs["initial_atom_pos"] = aux["atom_positions"]

aux["grad"] = jax.tree_map(lambda *x: np.stack(x).sum(0), *grad)

Expand Down
4 changes: 3 additions & 1 deletion colabdesign/af/inputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ def _update_template(self, inputs, key):
inputs[k] = inputs[k].at[...,5:].set(jnp.where(rm_sc[:,None],0,inputs[k][...,5:]))
inputs[k] = jnp.where(rm[:,None],0,inputs[k])

def update_seq(seq, inputs, seq_1hot=None, seq_pssm=None, mlm=None):
def update_seq(seq, inputs, seq_1hot=None, seq_pssm=None, mlm=None, mask_target=False):
'''update the sequence features'''
if seq_1hot is None: seq_1hot = seq["pseudo"]
if seq_pssm is None: seq_pssm = seq["pseudo"]
Expand All @@ -122,6 +122,8 @@ def update_seq(seq, inputs, seq_1hot=None, seq_pssm=None, mlm=None):
Y = jnp.zeros(msa_feat.shape[-1]).at[...,:23].set(X).at[...,25:48].set(X)
msa_feat = jnp.where(mlm[...,None],Y,msa_feat)
seq["pseudo"] = jnp.where(mlm[...,None],X[:seq["pseudo"].shape[-1]],seq["pseudo"])
if mask_target:
target_feat = jnp.where(mlm[0,:,None],0,target_feat)

inputs.update({"msa_feat":msa_feat, "target_feat":target_feat})

Expand Down
5 changes: 4 additions & 1 deletion colabdesign/af/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -541,8 +541,11 @@ def get_seq_ent_loss(inputs):
ent = (ent * mask).sum() / (mask.sum() + 1e-8)
return {"seq_ent":ent.mean()}

def get_mlm_loss(outputs, mask, truth=None):
def get_mlm_loss(outputs, mask, truth=None, unbias=False):
x = outputs["masked_msa"]["logits"][...,:20]
if unbias:
x_mean = (x * mask[...,None]).sum((0,1)) / (mask.sum() + 1e-8)
x = x - x_mean
if truth is None: truth = jax.nn.softmax(x)
ent = -(truth[...,:20] * jax.nn.log_softmax(x)).sum(-1)
ent = (ent * mask).sum(-1) / (mask.sum() + 1e-8)
Expand Down
14 changes: 9 additions & 5 deletions colabdesign/af/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,11 +33,13 @@ def __init__(self,
self.protocol = protocol
self._num = kwargs.pop("num_seq",1)
self._args = {"use_templates":use_templates, "use_multimer":use_multimer, "use_bfloat16":True,
"recycle_mode":"last", "use_mlm": False, "realign": True,
"recycle_mode":"last",
"use_mlm": False, "mask_target":False, "unbias_mlm": False,
"realign": True,
"debug":debug, "repeat":False, "homooligomer":False, "copies":1,
"optimizer":"sgd", "best_metric":"loss",
"traj_iter":1, "traj_max":10000,
"clear_prev": True, "use_dgram":False,
"clear_prev": True, "use_dgram":False, "use_dgram_pred":False,
"shuffle_first":True, "use_remat":True,
"alphabet_size":20,
"use_initial_guess":False, "use_initial_atom_pos":False}
Expand Down Expand Up @@ -101,7 +103,7 @@ def __init__(self,
num_recycles = self.opt["num_recycles"]
self._cfg.model.num_recycle = num_recycles
self._cfg.model.global_config.use_remat = self._args["use_remat"]
self._cfg.model.global_config.use_dgram = self._args["use_dgram"]
self._cfg.model.global_config.use_dgram_pred = self._args["use_dgram_pred"]
self._cfg.model.global_config.bfloat16 = self._args["use_bfloat16"]

# load model_params
Expand Down Expand Up @@ -159,7 +161,7 @@ def _model(params, model_params, inputs, key):
if a["use_mlm"]:
shape = seq["pseudo"].shape[:2]
mlm = jax.random.bernoulli(key(),opt["mlm_dropout"],shape)
update_seq(seq, inputs, seq_pssm=pssm, mlm=mlm)
update_seq(seq, inputs, seq_pssm=pssm, mlm=mlm, mask_target=a["mask_target"])
else:
update_seq(seq, inputs, seq_pssm=pssm)

Expand Down Expand Up @@ -221,8 +223,10 @@ def _model(params, model_params, inputs, key):
# experimental masked-language-modeling
if a["use_mlm"]:
aux["mlm"] = outputs["masked_msa"]["logits"]
aux["mlm_mask"] = mlm
mask = jnp.where(inputs["seq_mask"],mlm,0)
aux["losses"].update(get_mlm_loss(outputs, mask=mask, truth=seq["pssm"]))
aux["losses"].update(get_mlm_loss(outputs, mask=mask,
truth=seq["pssm"], unbias=a["unbias_mlm"]))

# run user defined callbacks
for c in ["loss","post"]:
Expand Down
19 changes: 17 additions & 2 deletions colabdesign/af/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from colabdesign.shared.utils import update_dict, Key
from colabdesign.shared.plot import plot_pseudo_3D, make_animation, show_pdb
from colabdesign.shared.protein import renum_pdb_str
from colabdesign.af.alphafold.common import protein
from colabdesign.af.alphafold.common import protein, residue_constants

####################################################
# AF_UTILS - various utils (save, plot, etc)
Expand Down Expand Up @@ -186,4 +186,19 @@ def plot_current_pdb(self, show_sidechains=False, show_mainchains=False,
- color=["pLDDT","chain","rainbow"]
'''
self.plot_pdb(show_sidechains=show_sidechains, show_mainchains=show_mainchains, color=color,
color_HP=color_HP, size=size, animate=animate, get_best=False)
color_HP=color_HP, size=size, animate=animate, get_best=False)

def dgram_from_positions(positions, seq=None, num_bins=39, min_bin=3.25, max_bin=50.75):
if seq is None:
atoms = {k:positions[...,residue_constants.atom_order[k],:] for k in ["N","CA","C"]}
c = _np_get_cb(**atoms, use_jax=False)
else:
ca = positions[...,residue_constants.atom_order["CA"],:]
cb = positions[...,residue_constants.atom_order["CB"],:]
is_gly = seq==residue_constants.restype_order["G"]
c = np.where(is_gly[:,None],ca,cb)
dist = np.sqrt(np.square(c[None,:] - c[:,None]).sum(-1,keepdims=True))
lower_breaks = np.linspace(min_bin, max_bin, num_bins)
lower_breaks = lower_breaks
upper_breaks = np.append(lower_breaks[1:],1e8)
return ((dist > lower_breaks) * (dist < upper_breaks)).astype(float)
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from setuptools import setup, find_packages
setup(
name='colabdesign',
version='1.1.2-beta0',
version='1.1.2-beta1',
description='Making Protein Design accessible to all via Google Colab!',
long_description="Making Protein Design accessible to all via Google Colab!",
long_description_content_type='text/markdown',
Expand Down