Skip to content

PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

License

Notifications You must be signed in to change notification settings

shrubb/box-convolutions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Box Convolution Layer for ConvNets


Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST

What This Is

This is a PyTorch implementation of the box convolution layer as introduced in the 2018 NeurIPS paper:

Burkov, E., & Lempitsky, V. (2018) Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems 31, 6214-6224.

How to Use

Installing

python3 -m pip install git+https://github.com/shrubb/box-convolutions.git
python3 -m box_convolution.test # if throws errors, please open a GitHub issue

To uninstall:

python3 -m pip uninstall box_convolution

Tested on Ubuntu 18.04.2, Python 3.6, PyTorch 1.0.0, GCC {4.9, 5.5, 6.5, 7.3}, CUDA 9.2. Other versions (e.g. macOS or Python 2.7 or CUDA 8 or CUDA 10) should work too, but I haven't checked. If something doesn't build, please open a Github issue.

Known issues (see this chat):

  • CUDA 9/9.1 + GCC 6 isn't supported due to a bug in NVCC.

You can specify a different compiler with CC environment variable:

CC=g++-7 python3 -m pip install git+https://github.com/shrubb/box-convolutions.git

Using

import torch
from box_convolution import BoxConv2d

box_conv = BoxConv2d(16, 8, 240, 320)
help(BoxConv2d)

Also, there are usage examples in examples/.

Quick Tour of Box convolutions

You may want to see our poster.

Why reinvent the old convolution?

3×3 convolutions are too small ⮕ receptive field grows too slow ⮕ ConvNets have to be very deep.

This is especially undesirable in dense prediction tasks (segmentation, depth estimation, object detection, ...).

Today people solve this by

  • dilated/deformable convolutions (can bring artifacts or degrade to 1×1 conv; almost always filter high-frequency);
  • "global" spatial pooling layers (usually too constrained, fixed size, not "fully convolutional").

How does it work?

Box convolution layer is a basic depthwise convolution (i.e. Conv2d with groups=in_channels) but with special kernels called box kernels.

A box kernel is a rectangular averaging filter. That is, filter values are fixed and unit! Instead, we learn four parameters per rectangle − its size and offset:

image

image

Any success stories?

One example: there is an efficient semantic segmentation model ENet. It's a classical hourglass architecture stacked of dozens ResNet-like blocks (left image).

Let's replace some of these blocks by our "box convolution block" (right image).

First we replaced every second block with a box convolution block (BoxENet in the paper). The model became

  • more accurate,
  • faster,
  • lighter
  • without dilated convolutions.

Then, we replaced every residual block (except the down- and up-sampling ones)! The result, BoxOnlyENet, is

  • a ConvNet almost without (traditional learnable weight) convolutions,
  • 2 times less operations,
  • 3 times less parameters,
  • still more accurate than ENet!

About

PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Resources

License

Stars

Watchers

Forks

Packages

No packages published