Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: fix fp8 for MLA and support bmm fp8 for DeepSeek V2 #1285

Merged
merged 2 commits into from
Sep 1, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 41 additions & 19 deletions python/sglang/srt/models/deepseek_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from typing import Any, Dict, Iterable, Optional, Tuple

import torch
from flashinfer import bmm_fp8
from torch import nn
from transformers import PretrainedConfig
from vllm.config import CacheConfig
Expand Down Expand Up @@ -161,6 +162,15 @@ def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
return 0.1 * mscale * math.log(scale) + 1.0


def input_to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


class DeepseekV2Attention(nn.Module):

def __init__(
Expand Down Expand Up @@ -255,11 +265,6 @@ def __init__(
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale

# self.attn = Attention(self.num_heads,
# self.qk_head_dim,
# self.scaling,
# num_kv_heads=self.num_heads)

# TODO, support head_size 192
self.attn = RadixAttention(
self.num_local_heads,
Expand All @@ -283,7 +288,7 @@ def forward(
q = self.q_proj(hidden_states)[0].view(
-1, self.num_local_heads, self.qk_head_dim
)
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
_, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
latent_cache = latent_cache.unsqueeze(1)
Expand Down Expand Up @@ -419,6 +424,7 @@ def __init__(

self.w_kc = None
self.w_vc = None
self.w_scale = None

def forward(
self,
Expand All @@ -439,8 +445,17 @@ def forward(
-1, self.num_local_heads, self.qk_head_dim
)
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
q_nope_out = q_input[..., : self.kv_lora_rank]
torch.bmm(q_nope.transpose(0, 1), self.w_kc, out=q_nope_out.transpose(0, 1))

if self.w_kc.dtype == torch.float8_e4m3fn:
q_nope_val, q_nope_scale = input_to_float8(
q_nope.transpose(0, 1), torch.float8_e4m3fn
)
q_nope_out = bmm_fp8(
q_nope_val, self.w_kc, q_nope_scale, self.w_scale, torch.bfloat16
)
else:
q_nope_out = torch.bmm(q_nope.transpose(0, 1), self.w_kc)
q_input[..., : self.kv_lora_rank] = q_nope_out.transpose(0, 1)

latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
v_input = latent_cache[..., : self.kv_lora_rank]
Expand All @@ -455,16 +470,21 @@ def forward(

attn_output = self.attn(q_input, k_input, v_input, input_metadata)
attn_output = attn_output.view(-1, self.num_local_heads, self.kv_lora_rank)
attn_bmm_output = attn_output.new_empty(
q_len, self.num_local_heads, self.v_head_dim
)
torch.bmm(
attn_output.transpose(0, 1),
self.w_vc,
out=attn_bmm_output.transpose(0, 1),
)

attn_output = attn_bmm_output.flatten(1, 2)
if self.w_vc.dtype == torch.float8_e4m3fn:
attn_output_val, attn_output_scale = input_to_float8(
attn_output.transpose(0, 1), torch.float8_e4m3fn
)
attn_bmm_output = bmm_fp8(
attn_output_val,
self.w_vc,
attn_output_scale,
self.w_scale,
torch.bfloat16,
)
else:
attn_bmm_output = torch.bmm(attn_output.transpose(0, 1), self.w_vc)
attn_output = attn_bmm_output.transpose(0, 1).flatten(1, 2)
output, _ = self.o_proj(attn_output)

return output
Expand Down Expand Up @@ -717,8 +737,10 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
w_kc, w_vc = self_attn.kv_b_proj.weight.unflatten(
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
self_attn.w_kc = w_kc.contiguous()
self_attn.w_vc = w_vc.transpose(1, 2).contiguous()
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
if hasattr(self_attn.kv_b_proj, "weight_scale"):
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
del self_attn.kv_b_proj


Expand Down
Loading