python Titan_orbit.py
>>> Date coverage: 1980-01-02 | 2032-12-31
>>> Orbit : 10751 days (Earth) = 29 years 5 months 7 days | 674 days (Titan)
>>> Equinox (V): 1980-02-22 | 2009-07-30
>>> Solstice (S): 1987-11-25 | 2017-05-14
>>> Equinox (A): 1995-11-07 | 2025-04-24
>>> Solstice (W): 2002-10-23 | 2032-03-26
>>> Obliquity : 26.73 deg
>>> N Spring : 2833 days (Earth) | 177 days (Titan) | Ls = 0 | R = 9.44 UA
>>> N Summer : 2904 days (Earth) | 182 days (Titan) | Ls = 90 | R = 10.03 UA
>>> N Autumn : 2542 days (Earth) | 159 days (Titan) | Ls = 180 | R = 9.59 UA
>>> N Winter : 2472 days (Earth) | 155 days (Titan) | Ls = 270 | R = 9.03 UA
>>> Perihelion : 2003-07-21 | 2032-11-21 | 9.01 UA | Ls = 280
>>> Aphelion : 1988-08-31 | 2018-04-07 | 10.07 UA | Ls = 98
>>> 360*(Date - Eq_V)/orbit = Ls + A * sin[2.PI/360 * (Ls - C)] + B
>>> with: A = 6.17 | B = 6.05 | C = 101.04
Note: 1 Titan day = 15.945 Earth day
python Titan_orbit.py 30
>>> Date: 1982-08-12
python Titan_orbit.py 30+1
>>>Date: 2012-01-18
python Titan_orbit.py 2012-01-18
>>> Ls: 29.99
We get a transcendental equation which is solved with the Newton method, ie. the series:
$$ L_s^0 = 360 \cdot \frac{\text{Date} - \text{Eq}^V}{\text{Orbit}} - B$$
$$ L_s^{n+1} = L_s^n - \frac{
L_s^n - L_s^0 + A\cdot\sin\left(2\pi\cdot \frac{L_s^n - C}{360} \right)
}{
1 + A\cdot\frac{2\pi}{360}\cos\left(2\pi\cdot \frac{L_s^n - C}{360} \right)
}$$
converge to the value of
Ellipse canonical cartesian equation: $$ \left( \frac{x}{a} \right)^2 + \left( \frac{y}{b} \right)^2 = 1$$
Rotation of
Rotated ellipse: $$ \left( \frac{X \cos\theta + Y \sin\theta}{a} \right)^2 + \left( \frac{-X \sin\theta + Y \sin\theta}{b} \right)^2 = 1$$
Primary focus location (Sun location): $$ \left(\begin{array}{r} X_f \ Y_f \end{array} \right) = \left(\begin{array}{rr} \cos\theta & \sin\theta \ -\sin\theta & \cos\theta \end{array} \right) \cdot \left(\begin{array}{r} c \ 0 \end{array} \right)$$
The line passing through the primary focus with an angle
Re-injected into the ellipse equation, we get:
- C \left[ \frac{\sin^2\theta}{a^2} + \frac{\cos^2\theta}{b^2} \right] \right)$$ $$ \gamma = D^2 \cdot \left( \frac{\sin^2\theta}{a^2} + \frac{\cos^2\theta}{b^2} \right) - 1 $$
Solving the second order polynomial equation will get
(NB: the sign
- Pioneer 11: 1979/09/11 (Ls = 354°)
- Voyager 1 : 1980/11/12 (Ls = 8°)
- Voyager 2 : 1981/08/25 (Ls = 18°)
- Cassini launch: 1997/10/15 (Ls = 203°)
- Saturn orbital insertion: 2004/07/01 (Ls = 293°)
- Huygens landing: 2005/01/14 (Ls = 300°)
- Equinox mission: 2008/06/30 (Ls = 346°)
- Solstice mission: 2010/02/03 (Ls = 6°)
- Grand Finale: 2017/04/23 (Ls = 89°)
- End of the mission: 2017/09/15 (Ls = 94°)
yarn install --dev
yarn coffee --watch --bare --compile assets/Seasons.coffee