This repository provides an official source code for:
Multi-Resolution Distillation for Self-Supervised Monocular Depth Estimation
Pattern Recognition Letters, 2023
The code base is Monodepth2 (Godard et al. 2019).
Please follow the several steps for training and evaluation.
1> Download KITTI raw dataset and unzip it.
wget -i splits/kitti_archives_to_download.txt -P kitti_data/
cd kitti_data
unzip "*.zip"
cd ..
2> Convert the image format to png.
find kitti_data/ -name '*.png' | parallel 'convert -quality 92 -sampling-factor 2x2,1x1,1x1 {.}.png {.}.jpg && rm {}'
3> Download the baseline model (Zhou et al. 2021) and locate them in ./checkpoints/diffnet
folder.
4> Extract ground-truth labels for evaluation
python export_gt_depth.py --data_path kitti_data --split eigen
Evaluate our model:
You can evaluate the trained model as follows:
python evaluate_depth.py
--data_path [KITTI_DATA_ROOT]
--eval_mono
Comming Soon.