Skip to content
/ TTS Public
forked from coqui-ai/TTS

πŸΈπŸ’¬ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

License

Notifications You must be signed in to change notification settings

sal-dti/TTS

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🐸TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. 🐸TTS comes with pretrained models, tools for measuring dataset quality and already used in 20+ languages for products and research projects.

Gitter License PyPI version Covenant Downloads DOI

GithubActions GithubActions GithubActions GithubActions GithubActions GithubActions GithubActions GithubActions GithubActions Docs

πŸ“° Subscribe to 🐸Coqui.ai Newsletter

πŸ“’ English Voice Samples and SoundCloud playlist

πŸ“„ Text-to-Speech paper collection

πŸ’¬ Where to ask questions

Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.

Type Platforms
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Issue Tracker
πŸ‘©β€πŸ’» Usage Questions Github Discussions
πŸ—― General Discussion Github Discussions or Gitter Room

πŸ”— Links and Resources

Type Links
πŸ’Ό Documentation ReadTheDocs
πŸ’Ύ Installation TTS/README.md
πŸ‘©β€πŸ’» Contributing CONTRIBUTING.md
πŸ“Œ Road Map Main Development Plans
πŸš€ Released Models TTS Releases and Experimental Models

πŸ₯‡ TTS Performance

Underlined "TTS*" and "Judy*" are 🐸TTS models

Features

  • High-performance Deep Learning models for Text2Speech tasks.
    • Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech).
    • Speaker Encoder to compute speaker embeddings efficiently.
    • Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN)
  • Fast and efficient model training.
  • Detailed training logs on the terminal and Tensorboard.
  • Support for Multi-speaker TTS.
  • Efficient, flexible, lightweight but feature complete Trainer API.
  • Released and ready-to-use models.
  • Tools to curate Text2Speech datasets underdataset_analysis.
  • Utilities to use and test your models.
  • Modular (but not too much) code base enabling easy implementation of new ideas.

Implemented Models

Text-to-Spectrogram

End-to-End Models

Attention Methods

  • Guided Attention: paper
  • Forward Backward Decoding: paper
  • Graves Attention: paper
  • Double Decoder Consistency: blog
  • Dynamic Convolutional Attention: paper
  • Alignment Network: paper

Speaker Encoder

Vocoders

You can also help us implement more models.

Install TTS

🐸TTS is tested on Ubuntu 18.04 with python >= 3.7, < 3.11..

If you are only interested in synthesizing speech with the released 🐸TTS models, installing from PyPI is the easiest option.

pip install TTS

If you plan to code or train models, clone 🐸TTS and install it locally.

git clone https://github.com/coqui-ai/TTS
pip install -e .[all,dev,notebooks]  # Select the relevant extras

If you are on Ubuntu (Debian), you can also run following commands for installation.

$ make system-deps  # intended to be used on Ubuntu (Debian). Let us know if you have a different OS.
$ make install

If you are on Windows, πŸ‘‘@GuyPaddock wrote installation instructions here.

Use TTS

Single Speaker Models

  • List provided models:

    $ tts --list_models
    
  • Get model info (for both tts_models and vocoder_models):

    • Query by type/name: The model_info_by_name uses the name as it from the --list_models.

      $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
      

      For example:

      $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts
      
      $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
      
    • Query by type/idx: The model_query_idx uses the corresponding idx from --list_models.

      $ tts --model_info_by_idx "<model_type>/<model_query_idx>"
      

      For example:

      $ tts --model_info_by_idx tts_models/3 
      
  • Run TTS with default models:

    $ tts --text "Text for TTS" --out_path output/path/speech.wav
    
  • Run a TTS model with its default vocoder model:

    $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
    

    For example:

    $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav
    
  • Run with specific TTS and vocoder models from the list:

    $ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --out_path output/path/speech.wav
    

    For example:

    $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav
    
  • Run your own TTS model (Using Griffin-Lim Vocoder):

    $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
    
  • Run your own TTS and Vocoder models:

    $ tts --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth --out_path output/path/speech.wav
        --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
    

Multi-speaker Models

  • List the available speakers and choose as <speaker_id> among them:

    $ tts --model_name "<language>/<dataset>/<model_name>"  --list_speaker_idxs
    
  • Run the multi-speaker TTS model with the target speaker ID:

    $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>"  --speaker_idx <speaker_id>
    
  • Run your own multi-speaker TTS model:

    $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/config.json --config_path path/to/model.pth --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
    

Directory Structure

|- notebooks/       (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|- utils/           (common utilities.)
|- TTS
    |- bin/             (folder for all the executables.)
      |- train*.py                  (train your target model.)
      |- distribute.py              (train your TTS model using Multiple GPUs.)
      |- compute_statistics.py      (compute dataset statistics for normalization.)
      |- ...
    |- tts/             (text to speech models)
        |- layers/          (model layer definitions)
        |- models/          (model definitions)
        |- utils/           (model specific utilities.)
    |- speaker_encoder/ (Speaker Encoder models.)
        |- (same)
    |- vocoder/         (Vocoder models.)
        |- (same)

About

πŸΈπŸ’¬ - a deep learning toolkit for Text-to-Speech, battle-tested in research and production

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 86.8%
  • Jupyter Notebook 12.4%
  • HTML 0.4%
  • Shell 0.2%
  • Makefile 0.1%
  • Cython 0.1%