Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Drop test fixes, handled in #29472
Browse files Browse the repository at this point in the history
  • Loading branch information
antonio-rojas committed Jun 19, 2020
1 parent 4a23a12 commit dfcdcb0
Show file tree
Hide file tree
Showing 8 changed files with 33 additions and 34 deletions.
4 changes: 2 additions & 2 deletions src/sage/lfunctions/dokchitser.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ class Dokchitser(SageObject):
0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + O(z^4)
sage: L.check_functional_equation()
6.11218974700000e-18 # 32-bit
6.11218974738703e-18 # 64-bit
6.04442711160669e-18 # 64-bit
RANK 2 ELLIPTIC CURVE:
Expand Down Expand Up @@ -670,7 +670,7 @@ def check_functional_equation(self, T=1.2):
sage: L = Dokchitser(conductor=1, gammaV=[0], weight=1, eps=1, poles=[1], residues=[-1], init='1')
sage: L.check_functional_equation()
-1.35525271600000e-20 # 32-bit
-1.35525271560688e-20 # 64-bit
-2.71050543121376e-20 # 64-bit
If we choose the sign in functional equation for the
`\zeta` function incorrectly, the functional equation
Expand Down
2 changes: 1 addition & 1 deletion src/sage/lfunctions/pari.py
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,7 @@ class LFunction(SageObject):
sage: L.taylor_series(1,4)
0.000000000000000 + 0.305999773834052*z + 0.186547797268162*z^2 - 0.136791463097188*z^3 + O(z^4)
sage: L.check_functional_equation()
4.33680868994202e-19
1.08420217248550e-19
.. RUBRIC:: Rank 2 elliptic curve
Expand Down
28 changes: 14 additions & 14 deletions src/sage/rings/number_field/number_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -3431,28 +3431,28 @@ def ideals_of_bdd_norm(self, bound):
Fractional ideal (2, 1/2*a - 1/2)
Fractional ideal (2, 1/2*a + 1/2)
3
Fractional ideal (3, 1/2*a + 1/2)
Fractional ideal (3, 1/2*a - 1/2)
Fractional ideal (3, 1/2*a + 1/2)
4
Fractional ideal (4, 1/2*a + 3/2)
Fractional ideal (2)
Fractional ideal (4, 1/2*a + 5/2)
5
6
Fractional ideal (6, 1/2*a + 7/2)
Fractional ideal (1/2*a + 1/2)
Fractional ideal (1/2*a - 1/2)
Fractional ideal (6, 1/2*a + 5/2)
Fractional ideal (6, 1/2*a + 7/2)
Fractional ideal (1/2*a + 1/2)
7
8
Fractional ideal (1/2*a + 3/2)
Fractional ideal (4, a - 1)
Fractional ideal (4, a + 1)
Fractional ideal (1/2*a - 3/2)
9
Fractional ideal (9, 1/2*a + 7/2)
Fractional ideal (3)
Fractional ideal (9, 1/2*a + 11/2)
Fractional ideal (3)
Fractional ideal (9, 1/2*a + 7/2)
10
"""
hnf_ideals = self.pari_nf().ideallist(bound)
Expand Down Expand Up @@ -4548,7 +4548,7 @@ def _S_class_group_and_units(self, S, proof=True):
-1/13*a^2 + 6/13*a + 345/13,
-1,
2/13*a^2 + 1/13*a - 755/13,
1/13*a^2 + 20/13*a - 7/13],
1/13*a^2 - 19/13*a - 7/13],
[(Fractional ideal (11, a - 2), 2), (Fractional ideal (19, a + 7), 2)])
Number fields defined by non-monic and non-integral
Expand Down Expand Up @@ -4706,9 +4706,9 @@ def selmer_group(self, S, m, proof=True, orders=False):
-1/13*a^2 + 6/13*a + 345/13,
-1,
2/13*a^2 + 1/13*a - 755/13,
1/13*a^2 + 20/13*a - 7/13,
1/13*a^2 - 45/13*a + 97/13,
-2/13*a^2 - 40/13*a + 27/13]
1/13*a^2 - 19/13*a - 7/13,
-1/13*a^2 + 45/13*a - 97/13,
2/13*a^2 + 40/13*a - 27/13]
Verify that :trac:`16708` is fixed::
Expand Down Expand Up @@ -5353,7 +5353,7 @@ def elements_of_norm(self, n, proof=None):
sage: K.<a> = NumberField(7/9*x^3 + 7/3*x^2 - 56*x + 123)
sage: K.elements_of_norm(7)
[28/225*a^2 + 77/75*a - 133/25]
[7/225*a^2 - 7/75*a - 42/25]
"""
proof = proof_flag(proof)
B = self.pari_bnf(proof).bnfisintnorm(n)
Expand Down Expand Up @@ -5456,7 +5456,7 @@ def factor(self, n):
sage: pari('setrand(2)')
sage: L.<b> = K.extension(x^2 - 7)
sage: f = L.factor(a + 1); f
(Fractional ideal (-1/2*b + 1/2*a + 1)) * (Fractional ideal (-1/2*a*b - a + 1/2))
(Fractional ideal (1/2*a*b - a + 1/2)) * (Fractional ideal (-1/2*a*b - a + 1/2))
sage: f.value() == a+1
True
Expand Down Expand Up @@ -6533,7 +6533,7 @@ def uniformizer(self, P, others="positive"):
sage: [K.uniformizer(P) for P,e in factor(K.ideal(5))]
[t^2 - t + 1, t + 2, t - 2]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(7))]
[t^2 - 4*t + 1]
[t^2 + 3*t + 1]
sage: [K.uniformizer(P) for P,e in factor(K.ideal(67))]
[t + 23, t + 26, t - 32, t - 18]
Expand Down Expand Up @@ -7803,11 +7803,11 @@ def optimized_representation(self, name=None, both_maps=True):
Ring morphism:
From: Number Field in a1 with defining polynomial x^3 - 7*x - 7
To: Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
Defn: a1 |--> 28/225*a^2 + 77/75*a - 133/25,
Defn: a1 |--> 7/225*a^2 - 7/75*a - 42/25,
Ring morphism:
From: Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
To: Number Field in a1 with defining polynomial x^3 - 7*x - 7
Defn: a |--> -60/7*a1^2 + 15*a1 + 39)
Defn: a |--> -15/7*a1^2 + 9)
"""
if name is None:
name = self.variable_names()
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/number_field/number_field_element.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -1733,7 +1733,7 @@ cdef class NumberFieldElement(FieldElement):
sage: P.<X> = K[]
sage: L = NumberField(X^2 + a^2 + 2*a + 1, 'b')
sage: K(17)._rnfisnorm(L)
((a^2 - 2)*b + 4, 1)
((a^2 - 2)*b - 4, 1)
sage: K.<a> = NumberField(x^3 + x + 1)
sage: Q.<X> = K[]
Expand Down
4 changes: 2 additions & 2 deletions src/sage/rings/number_field/number_field_ideal.py
Original file line number Diff line number Diff line change
Expand Up @@ -1823,7 +1823,7 @@ def factor(self):
sage: F.<a> = NumberField(2*x^3 + x + 1)
sage: fact = F.factor(2); fact
(Fractional ideal (-2*a^2 - 1))^2 * (Fractional ideal (2*a^2))
(Fractional ideal (2*a^2 + 1))^2 * (Fractional ideal (-2*a^2))
sage: [p[0].norm() for p in fact]
[2, 2]
"""
Expand Down Expand Up @@ -2414,7 +2414,7 @@ def idealcoprime(self, J):
sage: A.is_coprime(B)
False
sage: lam = A.idealcoprime(B); lam
1/6*a - 1/6
-1/6*a + 1/6
sage: (lam*A).is_coprime(B)
True
Expand Down
2 changes: 1 addition & 1 deletion src/sage/rings/number_field/unit_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,7 @@ def __init__(self, number_field, proof=True, S=None):
sage: K.unit_group()
Unit group with structure C2 x Z x Z of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123
sage: UnitGroup(K, S=tuple(K.primes_above(7)))
S-unit group with structure C2 x Z x Z x Z of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123 with S = (Fractional ideal (28/225*a^2 + 77/75*a - 133/25),)
S-unit group with structure C2 x Z x Z x Z of Number Field in a with defining polynomial 7/9*x^3 + 7/3*x^2 - 56*x + 123 with S = (Fractional ideal (7/225*a^2 - 7/75*a - 42/25),)
Conversion from unit group to a number field and back
gives the right results (:trac:`25874`)::
Expand Down
12 changes: 6 additions & 6 deletions src/sage/rings/polynomial/polynomial_quotient_ring.py
Original file line number Diff line number Diff line change
Expand Up @@ -1291,9 +1291,9 @@ def S_class_group(self, S, proof=True):
1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
6),
((-5/4*xbar^2 - 115/4,
(1/8*a - 5/8)*xbar^2 + 23/8*a - 115/8,
-1/16*xbar^3 - 17/16*xbar^2 - 23/16*xbar - 391/16,
1/16*a*xbar^3 + (-1/16*a - 5/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 115/8),
1/4*a*xbar^2 + 23/4*a,
-1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16,
1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a),
2)]
By using the ideal `(a)`, we cut the part of the class group coming from
Expand Down Expand Up @@ -1423,9 +1423,9 @@ def class_group(self, proof=True):
1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8),
6),
((-5/4*xbar^2 - 115/4,
(1/8*a - 5/8)*xbar^2 + 23/8*a - 115/8,
-1/16*xbar^3 - 17/16*xbar^2 - 23/16*xbar - 391/16,
1/16*a*xbar^3 + (-1/16*a - 5/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 115/8),
1/4*a*xbar^2 + 23/4*a,
-1/16*xbar^3 - 7/16*xbar^2 - 23/16*xbar - 161/16,
1/16*a*xbar^3 - 1/16*a*xbar^2 + 23/16*a*xbar - 23/16*a),
2)]
Note that all the returned values live where we expect them to::
Expand Down
13 changes: 6 additions & 7 deletions src/sage/schemes/elliptic_curves/ell_number_field.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,8 +301,7 @@ def simon_two_descent(self, verbose=0, lim1=2, lim3=4, limtriv=2,
(3,
3,
[(0 : 0 : 1),
(-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : 1),
(5/8*zeta43_0^2 + 17/8*zeta43_0 - 9/4 : -27/16*zeta43_0^2 - 103/16*zeta43_0 + 39/8 : 1)])
(-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : 1)])
"""
verbose = int(verbose)
if known_points is None:
Expand Down Expand Up @@ -810,7 +809,7 @@ def global_integral_model(self):
sage: K.<v> = NumberField(x^2 + 161*x - 150)
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/1296, 634768555/7776*v - 98002625/1296, 0, 0])
sage: E.global_integral_model()
Elliptic Curve defined by y^2 + (33872485050625*v-31078224284250)*x*y + (2020602604156076340058146664245468750000*v-1871778534673615560803175189398437500000)*y = x^3 + (6933305282258321342920781250*v-6422644400723486559914062500)*x^2 over Number Field in v with defining polynomial x^2 + 161*x - 150
Elliptic Curve defined by y^2 + (2094779518028859*v-1940492905300351)*x*y + (477997268472544193101178234454165304071127500*v-442791377441346852919930773849502871958097500)*y = x^3 + (26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2 over Number Field in v with defining polynomial x^2 + 161*x - 150
:trac:`14476`::
Expand Down Expand Up @@ -920,10 +919,10 @@ def _scale_by_units(self):
sage: E1 = E.scale_curve(u^5)
sage: E1.ainvs()
(0,
0,
0,
193309837823322216*a - 611299381639464252,
-3379649566176127326923323632*a + 10687390322316522207588229536)
0,
0,
28087920796764302856*a + 88821804456186580548,
-77225139016967233228487820912*a - 244207331916752959911655344864)
sage: E1._scale_by_units().ainvs()
(0, 0, 0, 4536*a + 14148, -163728*a - 474336)
Expand Down

0 comments on commit dfcdcb0

Please sign in to comment.