Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
Renamed project directory.
Browse files Browse the repository at this point in the history
  • Loading branch information
sverre320 committed Nov 23, 2020
1 parent fbe9446 commit 74ff9e4
Show file tree
Hide file tree
Showing 16 changed files with 208 additions and 208 deletions.
16 changes: 8 additions & 8 deletions src/doc/en/reference/algebras/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -41,14 +41,14 @@ Modules over named algebras
.. toctree::
:maxdepth: 2

sage/modules/finitely_presented_over_the_steenrod_algebra/fpa_module
sage/modules/finitely_presented_over_the_steenrod_algebra/fpa_element
sage/modules/finitely_presented_over_the_steenrod_algebra/fpa_homspace
sage/modules/finitely_presented_over_the_steenrod_algebra/fpa_morphism
sage/modules/finitely_presented_over_the_steenrod_algebra/fp_module
sage/modules/finitely_presented_over_the_steenrod_algebra/fp_element
sage/modules/finitely_presented_over_the_steenrod_algebra/fp_homspace
sage/modules/finitely_presented_over_the_steenrod_algebra/fp_morphism
sage/modules/fp_over_steenrod_algebra/fpa_module
sage/modules/fp_over_steenrod_algebra/fpa_element
sage/modules/fp_over_steenrod_algebra/fpa_homspace
sage/modules/fp_over_steenrod_algebra/fpa_morphism
sage/modules/fp_over_steenrod_algebra/fp_module
sage/modules/fp_over_steenrod_algebra/fp_element
sage/modules/fp_over_steenrod_algebra/fp_homspace
sage/modules/fp_over_steenrod_algebra/fp_morphism

Named associative algebras
--------------------------
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,11 @@
Elements of finitely presented graded modules
This class implements construction and basic manipulation of elements of the
Sage parent :class:`sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module.FP_Module`, which models
Sage parent :class:`sage.modules.fp_over_steenrod_algebra.fp_module.FP_Module`, which models
finitely presented modules over connected graded algebras.
.. NOTE:: This class is used by the derived class
:class:`sage.modules.finitely_presented_over_the_steenrod_algebra.fpa_element.FPA_Element`.
:class:`sage.modules.fp_over_steenrod_algebra.fpa_element.FPA_Element`.
AUTHORS:
Expand Down Expand Up @@ -58,8 +58,8 @@ def __init__(self, module, coefficients):
TESTS:
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_element import FP_Element
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_element import FP_Element
sage: FP_Element(FP_Module([0], SteenrodAlgebra(2)), [Sq(2)])
<Sq(2)>
Expand All @@ -79,7 +79,7 @@ def coefficients(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,1], SteenrodAlgebra(2), [[Sq(4), Sq(3)]])
sage: x = M.element_from_coordinates((0,0,1), 5)
Expand Down Expand Up @@ -108,7 +108,7 @@ def degree(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,1], SteenrodAlgebra(2), [[Sq(4), Sq(3)]])
sage: x = M.an_element(7)
Expand Down Expand Up @@ -140,7 +140,7 @@ def _repr_(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,1], SteenrodAlgebra(2), [[Sq(4), Sq(3)]])
sage: [M.an_element(n) for n in range(1,10)]
[<Sq(1), 1>,
Expand Down Expand Up @@ -169,7 +169,7 @@ def _lmul_(self, a):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = FP_Module([0,3], A2, [[Sq(2)*Sq(4), Sq(3)]])
sage: A2.Sq(2)*M.generator(1)
Expand Down Expand Up @@ -202,7 +202,7 @@ def _neg_(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = FP_Module([0], A2)
Expand Down Expand Up @@ -235,7 +235,7 @@ def _add_(self, other):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = FP_Module([0], A2)
Expand Down Expand Up @@ -288,7 +288,7 @@ def _richcmp_(self, other, op):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = FP_Module((0,1), A2)
sage: x = M([Sq(1), 1]); x
Expand Down Expand Up @@ -344,7 +344,7 @@ def vector_presentation(self):
A coordinate vector representing this module element when it is non-zero.
These are coordinates with respect to the basis chosen by
:meth:`sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module.FP_Module.basis_elements`.
:meth:`sage.modules.fp_over_steenrod_algebra.fp_module.FP_Module.basis_elements`.
When the element is zero, it has no well defined degree, and this
function returns ``None``.
Expand All @@ -354,13 +354,13 @@ def vector_presentation(self):
.. SEEALSO::
:meth:`sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module.FP_Module.vector_presentation`
:meth:`sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module.FP_Module.basis_elements`
:meth:`sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module.FP_Module.element_from_coordinates`
:meth:`sage.modules.fp_over_steenrod_algebra.fp_module.FP_Module.vector_presentation`
:meth:`sage.modules.fp_over_steenrod_algebra.fp_module.FP_Module.basis_elements`
:meth:`sage.modules.fp_over_steenrod_algebra.fp_module.FP_Module.element_from_coordinates`
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: M = FP_Module((0,1), A2)
Expand Down Expand Up @@ -415,7 +415,7 @@ def _nonzero_(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,2,4], SteenrodAlgebra(2), [[Sq(4),Sq(2),0]])
sage: M(0)._nonzero_()
False
Expand Down Expand Up @@ -444,7 +444,7 @@ def normalize(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,2,4], SteenrodAlgebra(2), [[Sq(4),Sq(2),0]])
sage: m = M((Sq(6), 0, Sq(2))); m
Expand Down Expand Up @@ -475,7 +475,7 @@ def __hash__(self):
TESTS::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: M = FP_Module([0,1], SteenrodAlgebra(2), [[Sq(4),Sq(3)]])
sage: M([Sq(3), Sq(2)]).__hash__() == M([Sq(1)*Sq(2), Sq(2)]).__hash__()
True
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,11 @@
graded `k`-algebra, where `k` is a field.
.. NOTE:: This class is intended for private use by
:class:`sage.modules.finitely_presented_over_the_steenrod_algebra.fpa_homspace.FPA_ModuleHomspace`.
:class:`sage.modules.fp_over_steenrod_algebra.fpa_homspace.FPA_ModuleHomspace`.
TESTS::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: from sage.misc.sage_unittest import TestSuite
sage: A = SteenrodAlgebra(2, profile=(3,2,1))
sage: F = FP_Module([1,3], A)
Expand Down Expand Up @@ -93,8 +93,8 @@ def is_FP_ModuleHomspace(x):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_homspace import is_FP_ModuleHomspace
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_homspace import is_FP_ModuleHomspace
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: F = FP_Module([1,3], A2)
sage: L = FP_Module([2,3], A2, [[Sq(2),Sq(1)], [0,Sq(2)]])
Expand Down Expand Up @@ -133,7 +133,7 @@ def _element_constructor_(self, values):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: F = FP_Module([1,3], A2)
sage: L = FP_Module([2,3], A2, [[Sq(2),Sq(1)], [0,Sq(2)]])
Expand Down Expand Up @@ -179,7 +179,7 @@ def an_element(self, n=0):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A = SteenrodAlgebra(2)
sage: HZ = FP_Module([0], A, relations=[[Sq(1)]])
Expand Down Expand Up @@ -222,7 +222,7 @@ def basis_elements(self, n):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A = SteenrodAlgebra(2)
sage: Hko = FP_Module([0], A, relations=[[Sq(2)], [Sq(1)]])
Expand All @@ -246,7 +246,7 @@ def zero(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: F = FP_Module([1,3], A2)
sage: L = FP_Module([2,3], A2, [[Sq(2),Sq(1)], [0,Sq(2)]])
Expand All @@ -270,7 +270,7 @@ def identity(self):
EXAMPLES::
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A2 = SteenrodAlgebra(2, profile=(3,2,1))
sage: L = FP_Module([2,3], A2, [[Sq(2),Sq(1)], [0,Sq(2)]])
Expand Down Expand Up @@ -317,7 +317,7 @@ def _basis_elements(self, n, basis):
TESTS:
sage: from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_module import FP_Module
sage: from sage.modules.fp_over_steenrod_algebra.fp_module import FP_Module
sage: A = SteenrodAlgebra(2)
sage: Hko = FP_Module([0], A, relations=[[Sq(2)], [Sq(1)]])
sage: Hom(Hko, Hko)._basis_elements(21, basis=True)
Expand Down Expand Up @@ -478,7 +478,7 @@ def _basis_elements(self, n, basis):
"""
from sage.modules.finitely_presented_over_the_steenrod_algebra.fp_morphism import _CreateRelationsMatrix
from sage.modules.fp_over_steenrod_algebra.fp_morphism import _CreateRelationsMatrix

M = self.domain()
N = self.codomain()
Expand Down
Loading

0 comments on commit 74ff9e4

Please sign in to comment.