Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
immprovements in docstring, including SEEALSOs
Browse files Browse the repository at this point in the history
  • Loading branch information
mo271 committed Mar 29, 2017
1 parent c303ed7 commit 6b938f8
Showing 1 changed file with 26 additions and 10 deletions.
36 changes: 26 additions & 10 deletions src/sage/geometry/polyhedron/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -481,10 +481,15 @@ def vertex_facet_graph(self, labels=True):
OUTPUT:
- a bipartite DiGraph. If `labels` is `True`, then the nodes
of the graph will actually be the vertices and facets of `self`,
- a bipartite DiGraph. If ``labels`` is ``True``, then the nodes
of the graph will actually be the vertices and facets of ``self``,
otherwise they will be integers.
.. SEEALSO::
:meth:`combinatorial_automorphism_group`,
:meth:`is_combinatorially_isomorphic`.
EXAMPLES::
sage: P = polytopes.cube()
Expand All @@ -507,7 +512,7 @@ def vertex_facet_graph(self, labels=True):
A vertex at (1, 1, 1)]
sage: G.automorphism_group().is_isomorphic(P.face_lattice().hasse_diagram().automorphism_group())
True
sage: O=polytopes.octahedron(); O
sage: O = polytopes.octahedron(); O
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: O.vertex_facet_graph()
Digraph on 14 vertices
Expand Down Expand Up @@ -4874,10 +4879,10 @@ def combinatorial_automorphism_group(self, vertex_graph_only=False):
OUTPUT:
A
:class:`PermutationGroup<sage.groups.perm_gps.permgroup.PermutationGroup_generic_with_category'>`
that is isomorphic to the combinatorial automorphism group is
returned.
A
:class:`PermutationGroup<sage.groups.perm_gps.permgroup.PermutationGroup_generic_with_category'>`
that is isomorphic to the combinatorial automorphism group is
returned.
- if ``vertex_graph_only`` is ``True``:
The automorphism group of the vertex-edge graph of the polyhedron
Expand All @@ -4892,6 +4897,12 @@ def combinatorial_automorphism_group(self, vertex_graph_only=False):
Depending on ``vertex_graph_only``, this method returns groups
that are not neccessarily isomorphic, see the examples below.
.. SEEALSO::
:meth:`is_combinatorially_isomorphic`,
:meth:`graph`,
:meth:`vertex_facet_graph`.
EXAMPLES::
sage: quadrangle = Polyhedron(vertices=[(0,0),(1,0),(0,1),(2,3)])
Expand Down Expand Up @@ -5316,12 +5327,17 @@ def is_combinatorially_isomorphic(self, other, algorithm='bipartite_graph'):
OUTPUT:
- ``True`` if the two polyhedra are combinatorially isomorphic
- ``False`` otherwise
- ``True`` if the two polyhedra are combinatorially isomorphic
- ``False`` otherwise
.. SEEALSO::
:meth:`combinatorial_automorphism_group`,
:meth:`vertex_facet_graph`.
REFERENCES:
For the equivalence of the two algorithms see [KK1995]_, p. 877-878
For the equivalence of the two algorithms see [KK1995]_, p. 877-878
EXAMPLES:
Expand Down

0 comments on commit 6b938f8

Please sign in to comment.