Skip to content
This repository has been archived by the owner on Jan 30, 2023. It is now read-only.

Commit

Permalink
remove optional giacpy_sage from multi_polynomial_ideal
Browse files Browse the repository at this point in the history
  • Loading branch information
Frederic HAN committed Aug 16, 2020
1 parent 2f528a1 commit 2e44aa6
Showing 1 changed file with 10 additions and 10 deletions.
20 changes: 10 additions & 10 deletions src/sage/rings/polynomial/multi_polynomial_ideal.py
Original file line number Diff line number Diff line change
Expand Up @@ -2099,7 +2099,7 @@ def elimination_ideal(self, variables, algorithm=None, *args, **kwds):
You can use Giac to compute the elimination ideal::
sage: I.elimination_ideal([t, s], algorithm="giac") == J # optional - giacpy_sage
sage: I.elimination_ideal([t, s], algorithm="giac") == J
...
Running a probabilistic check for the reconstructed Groebner basis...
True
Expand All @@ -2125,7 +2125,7 @@ def elimination_ideal(self, variables, algorithm=None, *args, **kwds):
sage: J = I.elimination_ideal([t,s]); J
Ideal (y^2 - x*z, x*y - z, x^2 - y) of Multivariate
Polynomial Ring in x, y, t, s, z over Algebraic Field
sage: I.elimination_ideal([t, s], algorithm="giac") == J # optional - giacpy_sage
sage: I.elimination_ideal([t, s], algorithm="giac") == J
Running a probabilistic check for the reconstructed Groebner basis...
True
"""
Expand Down Expand Up @@ -4003,20 +4003,20 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: J = I.change_ring(P.change_ring(order='degrevlex'))
sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random
sage: gb # optional - giacpy_sage
sage: gb = J.groebner_basis('giac') # random
sage: gb
[c^3 - 79/210*c^2 + 1/30*b + 1/70*c, b^2 - 3/5*c^2 - 1/5*b + 1/5*c, b*c + 6/5*c^2 - 1/10*b - 2/5*c, a + 2*b + 2*c - 1]
sage: J.groebner_basis.set_cache(gb) # optional - giacpy_sage
sage: J.groebner_basis.set_cache(gb)
sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis() # testing trac 21884
[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
Giac's gbasis over `\QQ` can benefit from a probabilistic lifting and
multi threaded operations::
sage: A9=PolynomialRing(QQ,9,'x') # optional - giacpy_sage
sage: I9=sage.rings.ideal.Katsura(A9) # optional - giacpy_sage
sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # optional - giacpy_sage, long time (3s)
sage: A9=PolynomialRing(QQ,9,'x')
sage: I9=sage.rings.ideal.Katsura(A9)
sage: I9.groebner_basis("giac",proba_epsilon=1e-7) # long time (3s)
...Running a probabilistic check for the reconstructed Groebner basis...
Polynomial Sequence with 143 Polynomials in 9 Variables
Expand Down Expand Up @@ -4259,8 +4259,8 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
sage: J = I.change_ring(P.change_ring(order='degrevlex'))
sage: gb = J.groebner_basis('giac') # optional - giacpy_sage, random
sage: gb # optional - giacpy_sage
sage: gb = J.groebner_basis('giac') # random
sage: gb
[c^3 + (-79/210)*c^2 + 1/30*b + 1/70*c, b^2 + (-3/5)*c^2 + (-1/5)*b + 1/5*c, b*c + 6/5*c^2 + (-1/10)*b + (-2/5)*c, a + 2*b + 2*c - 1]
sage: I = sage.rings.ideal.Katsura(P,3) # regenerate to prevent caching
Expand Down

0 comments on commit 2e44aa6

Please sign in to comment.