4.0
Release Tour
Sage 4.0 was released on May 29, 2009 (changelog), 140 tickets (PRs) merged, 40 contributors. A nicely formatted version of this release tour can be found at this Wordpress blog. The following points are some of the foci of this release:
- New symbolics based on Pynac
- Bring doctest coverage up to at least 75%
- Solaris 10 support (at least for gcc 4.3.x + gmake)
- Switch from Clisp to ECL
- OS X 64-bit support
Algebra
- Deprecate the
order()
method on elements of rings (John Palmieri) -- The methodorder()
of the classsage.structure.element.RingElement
is now deprecated and will be removed in a future release. For additive or multiplicative order, use theadditive_order
ormultiplicative_order
method respectively. - Partial fraction decomposition for irreducible denominators (Gonzalo Tornaria) -- For example, over the field
ZZ[x]
you can do
sage: R.<x> = ZZ["x"]
sage: q = x^2 / (x - 1)
sage: q.partial_fraction_decomposition()
(x + 1, [1/(x - 1)])
sage: q = x^10 / (x - 1)^5
sage: whole, parts = q.partial_fraction_decomposition()
sage: whole + sum(parts)
x^10/(x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 1)
sage: whole + sum(parts) == q
True
and over the finite field GF(2)[x]
:
sage: R.<x> = GF(2)["x"]
sage: q = (x + 1) / (x^3 + x + 1)
qsage: q.partial_fraction_decomposition()
(0, [(x + 1)/(x^3 + x + 1)])
Algebraic Geometry
- Various invariants for genus 2 hyperelliptic curves (Nick Alexander) -- The following invariants for genus 2 hyperelliptic curves are implemented in the module
sage/schemes/hyperelliptic_curves/hyperelliptic_g2_generic.py
:- the Clebsch invariants
- the Igusa-Clebsch invariants
- the absolute Igusa invariants
Basic Arithmetic
- Utility methods for integer arithmetics (Fredrik Johansson) -- New methods
trailing_zero_bits()
andsqrtrem()
for the classInteger
insage/rings/integer.pyx
:trailing_zero_bits(self)
-- Returns the number of trailing zero bits inself
, i.e. the exponent of the largest power of 2 dividingself
.sqrtrem(self)
-- Returns a pair(s, r)
wheres
is the integer square root ofself
andr
is the remainder such thatself = s^2 + r
. Here are some examples for working with these new methods:
sage: 13.trailing_zero_bits()
0
sage: (-13).trailing_zero_bits()
0
sage: (-13 >> 2).trailing_zero_bits()
2
sage: (-13 >> 3).trailing_zero_bits()
1
sage: (-13 << 3).trailing_zero_bits()
3
sage: (-13 << 2).trailing_zero_bits()
2
sage: 29.sqrtrem()
(5, 4)
sage: 25.sqrtrem()
(5, 0)
- Casting from float to rationals (Robert Bradshaw) -- One can now create a rational out of a float. Here's an example:
sage: a = float(1.0)
sage: QQ(a)
1
sage: type(a); type(QQ(a))
<type 'float'>
<type 'sage.rings.rational.Rational'>
- Speedup to Integer creation (Robert Bradshaw) -- Memory for recycled integers are only reclaimed if over 10 limbs are used, giving a significant speedup for small integers. (Previously all integers were reallocated to a single limb, which were often then reallocated to two limbs for arithmetic operations even when the result fit into a single limb.)
Combinatorics
- ASCII art output for Dynkin diagrams (Dan Bump) -- Support for ASCII art representation of Dynkin diagrams of a finite Cartan type. Here are some examples:
sage: DynkinDiagram("E6")
O 2
|
|
O---O---O---O---O
1 3 4 5 6
E6
sage: DynkinDiagram(['E',6,1])
O 0
|
|
O 2
|
|
O---O---O---O---O
1 3 4 5 6
E6~
- Crystal of letters for type E (Brant Jones, Anne Schilling) -- Support crystal of letters for type E corresponding to the highest weight crystal
B(\Lambda_1)
and its dualB(\Lambda_6)
(using the Sage labeling convention of the Dynkin nodes). Here are some examples:
sage: C = CrystalOfLetters(['E',6])
sage: C.list()
[[1],
[-1, 3],
[-3, 4],
[-4, 2, 5],
[-2, 5],
[-5, 2, 6],
[-2, -5, 4, 6],
[-4, 3, 6],
[-3, 1, 6],
[-1, 6],
[-6, 2],
[-2, -6, 4],
[-4, -6, 3, 5],
[-3, -6, 1, 5],
[-1, -6, 5],
[-5, 3],
[-3, -5, 1, 4],
[-1, -5, 4],
[-4, 1, 2],
[-1, -4, 2, 3],
[-3, 2],
[-2, -3, 4],
[-4, 5],
[-5, 6],
[-6],
[-2, 1],
[-1, -2, 3]]
sage: C = CrystalOfLetters(['E',6], element_print_style="compact")
sage: C.list()
[+, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]
Commutative Algebra
- Improved performance for
SR
(Martin Albrecht) -- The speed-up gain forSR
is up to 6x. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: sr = mq.SR(4, 4, 4, 8, gf2=True, polybori=True, allow_zero_inversions=True)
sage: %time F,s = sr.polynomial_system()
CPU times: user 21.65 s, sys: 0.03 s, total: 21.68 s
Wall time: 21.83 s
# AFTER
sage: sr = mq.SR(4, 4, 4, 8, gf2=True, polybori=True, allow_zero_inversions=True)
sage: %time F,s = sr.polynomial_system()
CPU times: user 3.61 s, sys: 0.06 s, total: 3.67 s
Wall time: 3.67 s
- Symmetric Groebner bases and infinitely generated polynomial rings (Simon King, Mike Hansen) -- The new modules
sage/rings/polynomial/infinite_polynomial_element.py
andsage/rings/polynomial/infinite_polynomial_ring.py
support computation in polynomial rings with a countably infinite number of variables. Here are some examples for working with these new modules:
sage: from sage.rings.polynomial.infinite_polynomial_element import InfinitePolynomial
sage: X.<x> = InfinitePolynomialRing(QQ)
sage: a = InfinitePolynomial(X, "(x1 + x2)^2"); a
x2^2 + 2*x2*x1 + x1^2
sage: p = a.polynomial()
sage: b = InfinitePolynomial(X, a.polynomial())
sage: a == b
True
sage: InfinitePolynomial(X, int(1))
1
sage: InfinitePolynomial(X, 1)
1
sage: Y.<x,y> = InfinitePolynomialRing(GF(2), implementation="sparse")
sage: InfinitePolynomial(Y, a)
x2^2 + x1^2
sage: X.<x,y> = InfinitePolynomialRing(QQ, implementation="sparse")
sage: A.<a,b> = InfinitePolynomialRing(QQ, order="deglex")
sage: f = x[5] + 2; f
x5 + 2
sage: g = 3*y[1]; g
3*y1
sage: g._p.parent()
Univariate Polynomial Ring in y1 over Rational Field
sage: f2 = a[5] + 2; f2
a5 + 2
sage: g2 = 3*b[1]; g2
3*b1
sage: A.polynomial_ring()
Multivariate Polynomial Ring in b5, b4, b3, b2, b1, b0, a5, a4, a3, a2, a1, a0 over Rational Field
sage: f + g
3*y1 + x5 + 2
sage: p = x[10]^2 * (f + g); p
3*y1*x10^2 + x10^2*x5 + 2*x10^2
Furthermore, the new module sage/rings/polynomial/symmetric_ideal.py
supports ideals of polynomial rings in a countably infinite number of variables that are invariant under variable permutation. Symmetric reduction of infinite polynomials is provided by the new module sage/rings/polynomial/symmetric_reduction.pyx
.
Geometry
- Simplicial complex method for polytopes (Marshall Hampton) -- New method
simplicial_complex()
in the classPolyhedron
ofsage/geometry/polyhedra.py
for computing the simplicial complex from a triangulation of the polytope. Here's an example:
sage: p = polytopes.cuboctahedron()
sage: p.simplicial_complex()
Simplicial complex with 13 vertices and 20 facets
- Face lattices and f-vectors for polytopes (Marshall Hampton) -- New methods
face_lattice()
andf_vector()
in the classPolyhedron
ofsage/geometry/polyhedra.py
:face_lattice()
-- Returns the face-lattice poset. Elements are tuples of (vertices, facets) which keeps track of both the vertices in each face, and all the facets containing them. This method implements the results from the following paper:- V. Kaibel and M.E. Pfetsch. Computing the face lattice of a polytope from its vertex-facet incidences. Computational Geometry, 23(3):281--290, 2002.
f_vector()
-- Returns the f-vector of a polytope as a list. Here are some examples:
sage: c5_10 = Polyhedron(vertices = [[i,i^2,i^3,i^4,i^5] for i in xrange(1,11)])
sage: c5_10_fl = c5_10.face_lattice()
sage: [len(x) for x in c5_10_fl.level_sets()]
[1, 10, 45, 100, 105, 42, 1]
sage: p = Polyhedron(vertices = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1], [0, 0, 0]])
sage: p.f_vector()
[1, 7, 12, 7, 1]
Graph Theory
- Graph colouring (Robert Miller) -- New method
coloring()
of the classsage.graphs.graph.Graph
for obtaining the first (optimal) coloring found on a graph. Here are some examples on using this new method:
sage: G = Graph("Fooba")
sage: P = G.coloring()
sage: G.plot(partition=P)
sage: H = G.coloring(hex_colors=True)
sage: G.plot(vertex_colors=H)
- Optimize the construction of large Sage graphs (Radoslav Kirov) -- The construction of large Sage graphs is now up to 19x faster than previously. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: D = {}
sage: for i in xrange(10^3):
....: D[i] = [i+1, i-1]
....:
sage: timeit("g = Graph(D)")
5 loops, best of 3: 1.02 s per loop
# AFTER
sage: D = {}
sage: for i in xrange(10^3):
....: D[i] = [i+1, i-1]
....:
sage: timeit("g = Graph(D)")
5 loops, best of 3: 51.2 ms per loop
- Generate size
n
trees in linear time (Ryan Dingman) -- The speed-up can be up to 3400x. However, the efficiency gain is greater asn
becomes larger. The following timing statistics were produced using the machine sage.math:
# BEFORE
sage: %time L = list(graphs.trees(2))
CPU times: user 0.13 s, sys: 0.02 s, total: 0.15 s
Wall time: 0.18 s
sage: %time L = list(graphs.trees(4))
CPU times: user 0.02 s, sys: 0.00 s, total: 0.02 s
Wall time: 0.02 s
sage: %time L = list(graphs.trees(6))
CPU times: user 0.08 s, sys: 0.00 s, total: 0.08 s
Wall time: 0.07 s
sage: %time L = list(graphs.trees(8))
CPU times: user 0.59 s, sys: 0.00 s, total: 0.59 s
Wall time: 0.60 s
sage: %time L = list(graphs.trees(10))
CPU times: user 34.48 s, sys: 0.02 s, total: 34.50 s
Wall time: 34.51 s
# AFTER
sage: %time L = list(graphs.trees(2))
CPU times: user 0.11 s, sys: 0.02 s, total: 0.13 s
Wall time: 0.15 s
sage: %time L = list(graphs.trees(4))
CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s
Wall time: 0.00 s
sage: %time L = list(graphs.trees(6))
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
sage: %time L = list(graphs.trees(8))
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
sage: %time L = list(graphs.trees(10))
CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s
Wall time: 0.01 s
sage: %time L = list(graphs.trees(12))
CPU times: user 0.06 s, sys: 0.00 s, total: 0.06 s
Wall time: 0.05 s
sage: %time L = list(graphs.trees(14))
CPU times: user 0.51 s, sys: 0.01 s, total: 0.52 s
Wall time: 0.52 s
Graphics
- Implicit Surfaces (Bill Cauchois, Carl Witty) -- New function
implicit_plot3d
for plotting level sets of 3-D functions. The documentation contains many examples. Here's a sphere contained inside a tube-like sphere:
sage: x, y, z = var("x, y, z")
sage: T = 1.61803398875
sage: p = 2 - (cos(x + T*y) + cos(x - T*y) + cos(y + T*z) + cos(y - T*z) + cos(z - T*x) + cos(z + T*x))
sage: r = 4.77
sage: implicit_plot3d(p, (-r, r), (-r, r), (-r, r), plot_points=40, zoom=1.2).show()
- Here's a Klein bottle:
sage: x, y, z = var("x, y, z")
sage: implicit_plot3d((x^2+y^2+z^2+2*y-1)*((x^2+y^2+z^2-2*y-1)^2-8*z^2)+16*x*z*(x^2+y^2+z^2-2*y-1), (x, -3, 3), (y, -3.1, 3.1), (z, -4, 4), zoom=1.2)
- This example shows something resembling a water droplet:
sage: x, y, z = var("x, y, z")
sage: implicit_plot3d(x^2 +y^2 -(1-z)*z^2, (x, -1.5, 1.5), (y, -1.5, 1.5), (z, -1, 1), zoom=1.2)
- Fixed bug in rendering 2D polytopes embedded in 3D (Arnauld Bergeron, Bill Cauchois, Marshall Hampton).
Group Theory
- Improved efficiency of
is_subgroup
(Simon King) -- Testing whether a group is a subgroup of another group is now up to 2x faster than previously. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: G = SymmetricGroup(7)
sage: H = SymmetricGroup(6)
sage: %time H.is_subgroup(G)
CPU times: user 4.12 s, sys: 0.53 s, total: 4.65 s
Wall time: 5.51 s
True
sage: %timeit H.is_subgroup(G)
10000 loops, best of 3: 118 µs per loop
# AFTER
sage: G = SymmetricGroup(7)
sage: H = SymmetricGroup(6)
sage: %time H.is_subgroup(G)
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
True
sage: %timeit H.is_subgroup(G)
10000 loops, best of 3: 56.3 µs per loop
Interfaces
- Viewing Sage objects with a PDF viewer (Nicolas Thiery) -- Implements the option
viewer="pdf"
for the commandview()
so that one can invoke this command in the formview(object, viewer="pdf")
in order to viewobject
using a PDF viewer. Typical uses of this new optional argument include:- You prefer to use a PDF viewer rather than a DVI viewer.
- You want to view LaTeX snippets which are not displayed well in DVI viewers (e.g. graphics produced using tikzpicture).
- Change name of Pari's
sum
function when imported (Craig Citro) -- When Pari'ssum
function is imported, it is renamed topari_sum
in order to avoid conflict Python'ssum
function.
Linear Algebra
- Improved performance for the generic
linear_combination_of_rows
andlinear_combination_of_columns
functions for matrices (William Stein) -- The speed-up for the generic functionslinear_combination_of_rows
andlinear_combination_of_columns
is up to 4x. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: A = random_matrix(QQ, 50)
sage: v = [1..50]
sage: %timeit A.linear_combination_of_rows(v);
1000 loops, best of 3: 1.99 ms per loop
sage: %timeit A.linear_combination_of_columns(v);
1000 loops, best of 3: 1.97 ms per loop
# AFTER
sage: A = random_matrix(QQ, 50)
sage: v = [1..50]
sage: %timeit A.linear_combination_of_rows(v);
1000 loops, best of 3: 436 µs per loop
sage: %timeit A.linear_combination_of_columns(v);
1000 loops, best of 3: 457 µs per loop
- Massively improved performance for
4 x 4
determinants (Tom Boothby) -- The efficiency of computing the determinants of4 x 4
matrices can range from 16x up to 58,083x faster than previously, depending on the base ring. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: S = MatrixSpace(ZZ, 4)
sage: M = S.random_element(1, 10^8)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 53 µs per loop
sage: M = S.random_element(1, 10^10)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 54.1 µs per loop
sage:
sage: M = S.random_element(1, 10^200)
sage: timeit("M.det(); M._clear_cache()")
5 loops, best of 3: 121 ms per loop
sage: M = S.random_element(1, 10^300)
sage: timeit("M.det(); M._clear_cache()")
5 loops, best of 3: 338 ms per loop
sage: M = S.random_element(1, 10^1000)
sage: timeit("M.det(); M._clear_cache()")
5 loops, best of 3: 9.7 s per loop
# AFTER
sage: S = MatrixSpace(ZZ, 4)
sage: M = S.random_element(1, 10^8)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 3.17 µs per loop
sage: M = S.random_element(1, 10^10)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 3.44 µs per loop
sage:
sage: M = S.random_element(1, 10^200)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 15.3 µs per loop
sage: M = S.random_element(1, 10^300)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 27 µs per loop
sage: M = S.random_element(1, 10^1000)
sage: timeit("M.det(); M._clear_cache()")
625 loops, best of 3: 167 µs per loop
- Refactor matrix kernels (Rob Beezer) -- The core section of kernel computation for each (specialized) class is now moved into the method
right_kernel()
. Mostly these would replacekernel()
methods that are computing left kernels. A call tokernel()
orleft_kernel()
should arrive at the top of the hierarchy where it would take a transpose and call the (specialized)right_kernel()
. So there wouldn't be a change in behavior in routines currently callingkernel()
orleft_kernel()
, and Sage's preference for the left is retained by having the vanillakernel()
give back a left kernel. The speed-up for the computation of left kernels is up to 5% faster, and the computation of right kernels is up to 31% by eliminating paired transposes. The following timing statistics were obtained using sage.math:
# BEFORE
sage: n = 2000
sage: entries = [[1/(i+j+1) for i in srange(n)] for j in srange(n)]
sage: mat = matrix(QQ, entries)
sage: %time mat.left_kernel();
CPU times: user 21.92 s, sys: 3.22 s, total: 25.14 s
Wall time: 25.26 s
sage: %time mat.right_kernel();
CPU times: user 23.62 s, sys: 3.32 s, total: 26.94 s
Wall time: 26.94 s
# AFTER
sage: n = 2000
sage: entries = [[1/(i+j+1) for i in srange(n)] for j in srange(n)]
sage: mat = matrix(QQ, entries)
sage: %time mat.left_kernel();
CPU times: user 20.87 s, sys: 2.94 s, total: 23.81 s
Wall time: 23.89 s
sage: %time mat.right_kernel();
CPU times: user 18.43 s, sys: 0.00 s, total: 18.43 s
Wall time: 18.43 s
- Cholesky decomposition for matrices other than
RDF
(Nick Alexander) -- The methodcholesky()
of the classMatrix_double_dense
insage/matrix/matrix_double_dense.pyx
is now deprecated and will be removed in a future release. Users are advised to usecholesky_decomposition()
instead. The new methodcholesky_decomposition()
in the classMatrix
ofsage/matrix/matrix2.pyx
can be used to compute the Cholesky decomposition of matrices with entries over arbitrary precision real and complex fields. Here's an example over the real double field:
sage: r = matrix(RDF, 5, 5, [ 0,0,0,0,1, 1,1,1,1,1, 16,8,4,2,1, 81,27,9,3,1, 256,64,16,4,1 ])
sage: m = r * r.transpose(); m
[ 1.0 1.0 1.0 1.0 1.0]
[ 1.0 5.0 31.0 121.0 341.0]
[ 1.0 31.0 341.0 1555.0 4681.0]
[ 1.0 121.0 1555.0 7381.0 22621.0]
[ 1.0 341.0 4681.0 22621.0 69905.0]
sage: L = m.cholesky_decomposition(); L
[ 1.0 0.0 0.0 0.0 0.0]
[ 1.0 2.0 0.0 0.0 0.0]
[ 1.0 15.0 10.7238052948 0.0 0.0]
[ 1.0 60.0 60.9858144589 7.79297342371 0.0]
[ 1.0 170.0 198.623524155 39.3665667796 1.72309958068]
sage: L.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Double Field
sage: L*L.transpose()
[ 1.0 1.0 1.0 1.0 1.0]
[ 1.0 5.0 31.0 121.0 341.0]
[ 1.0 31.0 341.0 1555.0 4681.0]
[ 1.0 121.0 1555.0 7381.0 22621.0]
[ 1.0 341.0 4681.0 22621.0 69905.0]
sage: ( L*L.transpose() - m ).norm(1) < 2^-30
True
Here's an example over a higher precision real field:
sage: r = matrix(RealField(100), 5, 5, [ 0,0,0,0,1, 1,1,1,1,1, 16,8,4,2,1, 81,27,9,3,1, 256,64,16,4,1 ])
sage: m = r * r.transpose()
sage: L = m.cholesky_decomposition()
sage: L.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Field with 100 bits of precision
sage: ( L*L.transpose() - m ).norm(1) < 2^-50
True
Here's a Hermitian example:
sage: r = matrix(CDF, 2, 2, [ 1, -2*I, 2*I, 6 ]); r
[ 1.0 -2.0*I]
[ 2.0*I 6.0]
sage: r.eigenvalues()
[0.298437881284, 6.70156211872]
sage: ( r - r.conjugate().transpose() ).norm(1) < 1e-30
True
sage: L = r.cholesky_decomposition(); L
[ 1.0 0]
[ 2.0*I 1.41421356237]
sage: ( r - L*L.conjugate().transpose() ).norm(1) < 1e-30
True
sage: L.parent()
Full MatrixSpace of 2 by 2 dense matrices over Complex Double Field
Note that the implementation uses a standard recursion that is not known to be numerically stable. Furthermore, it is potentially expensive to ensure that the input is positive definite. Therefore this is not checked and it is possible that the output matrix is not a valid Cholesky decomposition of a matrix.
- Make symbolic matrices use pynac symbolics (Mike Hansen, Jason Grout) -- Using Pynac symbolics, calculating the determinant of a symbolic matrix can be up to 2500x faster than previously. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: x00, x01, x10, x11 = var("x00, x01, x10, x11")
sage: a = matrix(2, [[x00,x01], [x10,x11]])
sage: %timeit a.det()
100 loops, best of 3: 8.29 ms per loop
# AFTER
sage: x00, x01, x10, x11 = var("x00, x01, x10, x11")
sage: a = matrix(2, [[x00,x01], [x10,x11]])
sage: %timeit a.det()
100000 loops, best of 3: 3.2 µs per loop
Miscellaneous
- Allow use of
pdflatex
instead oflatex
(John Palmieri) -- One can now usepdflatex
instead oflatex
in two different ways:- Use a
%pdflatex
cell in a notebook; or - Call
latex.pdflatex(True)
after which any use oflatex
(in a%latex
cell or using theview
command) will usepdflatex
. One visually appealing aspect of this is that if you have the most recent version of pgf installed, as well as thetkz-graph
package, you can produce images like the following:
- Use a
Modular Forms
- Action of Hecke operators on
Gamma_1(N)
modular forms (David Loeffler) -- Here's an example:
sage: ModularForms(Gamma1(11), 2).hecke_matrix(2)
[ -2 0 0 0 0 0 0 0 0 0]
[ 0 -381 0 -360 0 120 -4680 -6528 -1584 7752]
[ 0 -190 0 -180 0 60 -2333 -3262 -789 3887]
[ 0 -634/11 1 -576/11 0 170/11 -7642/11 -10766/11 -231 12555/11]
[ 0 98/11 0 78/11 0 -26/11 1157/11 1707/11 30 -1959/11]
[ 0 290/11 0 271/11 0 -50/11 3490/11 5019/11 99 -5694/11]
[ 0 230/11 0 210/11 0 -70/11 2807/11 3940/11 84 -4632/11]
[ 0 122/11 0 120/11 1 -40/11 1505/11 2088/11 48 -2463/11]
[ 0 42/11 0 46/11 0 -30/11 554/11 708/11 21 -970/11]
[ 0 10/11 0 12/11 0 7/11 123/11 145/11 7 -177/11]
- Slopes of
U_p
operator acting on a space of overconvergent modular forms (Lloyd Kilford) -- New methodslopes
of the classOverconvergentModularFormsSpace
insage/modular/overconvergent/genus0.py
for computing the slopes of theU_p
operator acting on a space of overconvergent modular forms. Here are some examples of using this new method:
sage: OverconvergentModularForms(5,2,1/3,base_ring=Qp(5),prec=100).slopes(5)
[0, 2, 5, 6, 9]
sage: OverconvergentModularForms(2,1,1/3,char=DirichletGroup(4,QQ).0).slopes(5)
[0, 2, 4, 6, 8]
Number Theory
- Function
multiplicative_generator
forZ/NZ
(David Loeffler) -- This adds support for the case wheren
is twice a power of an odd prime. Also, the new methodsubgroups()
is added to the classAbelianGroup_class
insage/groups/abelian_gps/abelian_group.py
. The method computes all the subgroups of a finite abelian group. Here's an example on working with the new methodsubgroups()
:
sage: AbelianGroup([2,3]).subgroups()
[Multiplicative Abelian Group isomorphic to C2 x C3, which is the subgroup of
Multiplicative Abelian Group isomorphic to C2 x C3
generated by [f0*f1^2],
Multiplicative Abelian Group isomorphic to C2, which is the subgroup of
Multiplicative Abelian Group isomorphic to C2 x C3
generated by [f0],
Multiplicative Abelian Group isomorphic to C3, which is the subgroup of
Multiplicative Abelian Group isomorphic to C2 x C3
generated by [f1],
Trivial Abelian Group, which is the subgroup of
Multiplicative Abelian Group isomorphic to C2 x C3
generated by []]
sage:
sage: len(AbelianGroup([2,3,8]).subgroups())
22
sage: len(AbelianGroup([2,4,8]).subgroups())
81
- Speed-up relativization of number fields (Nick Alexander) -- The efficiency gain of relativizing a number field can be up to 1700x. Furthermore, the rewrite of the method
relativize()
allows for relativization over large number fields. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: x = ZZ['x'].0
sage: f1 = x^6 - x^5 + 3*x^4 - x^3 + 2*x + 1
sage: f2 = x^6 - 3*x^4 - 3*x^3 + x^2 - 5*x + 128
sage: Cs = NumberField(f1, 'a').composite_fields(NumberField(f2, 'b'),'c')
sage: Cs[0]
Number Field in c0 with defining polynomial x^36 + 6*x^35 + 15*x^34 - 4*x^33 - 111*x^32 - 274*x^31 + 582*x^30 + 4324*x^29 - 3789*x^28 - 54668*x^27 + 32320*x^26 + 856085*x^25 + 1298637*x^24 - 2417756*x^23 - 13665500*x^22 - 20951687*x^21 + 59477645*x^20 + 87168628*x^19 - 22215303*x^18 + 1087742856*x^17 + 818805906*x^16 - 6530512252*x^15 + 2925074857*x^14 + 34364936564*x^13 - 33537062600*x^12 - 118414559201*x^11 + 163183807491*x^10 + 260157742832*x^9 - 605914536*x^8 + 913639172503*x^7 + 2281698823419*x^6 - 2611018483575*x^5 - 9050720943737*x^4 - 6039450304329*x^3 + 11443636068924*x^2 + 6013419415005*x + 2666558286895
sage: %time Cs[0].relativize(Cs[0].subfields(6)[0][1], 'z')
CPU times: user 4899.67 s, sys: 0.17 s, total: 4899.84 s
Wall time: 4900.01 s
Number Field in z0 with defining polynomial x^6 + (-10039053522/7502233115183347*c00^5 + 10877293823487/15004466230366694*c00^4 - 2360331495431769/15004466230366694*c00^3 + 128474733039101100/7502233115183347*c00^2 - 14065562373889051803/15004466230366694*c00 + 310508311372489830621/15004466230366694)*x^5 + (1684161096735/60017864921466776*c00^5 - 482099403293805/30008932460733388*c00^4 + 220599517382473455/60017864921466776*c00^3 - 25269626581733395995/60017864921466776*c00^2 + 727078349789696789565/30008932460733388*c00 - 33787826577687321855963/60017864921466776)*x^4 + (78399653403/15004466230366694*c00^5 - 20828815654522/7502233115183347*c00^4 + 8825176716960093/15004466230366694*c00^3 - 933213426139820735/15004466230366694*c00^2 + 24657212906331074698/7502233115183347*c00 - 1041516656628768048179/15004466230366694)*x^3 + (-801387260499/30008932460733388*c00^5 + 115968827806665/7502233115183347*c00^4 - 107159067879439581/30008932460733388*c00^3 + 12379376610271322667/30008932460733388*c00^2 - 179457468744004910316/7502233115183347*c00 + 16802522081228250322201/30008932460733388)*x^2 + (-1558518536591/60017864921466776*c00^5 + 444804027025213/30008932460733388*c00^4 - 202861597209142591/60017864921466776*c00^3 + 23151366405463607211/60017864921466776*c00^2 - 663271312652093373749/30008932460733388*c00 + 30664716263354572251675/60017864921466776)*x + c00 over its base field
#AFTER
sage: x = ZZ['x'].0
sage: f1 = x^6 - x^5 + 3*x^4 - x^3 + 2*x + 1
sage: f2 = x^6 - 3*x^4 - 3*x^3 + x^2 - 5*x + 128
sage: Cs = NumberField(f1, 'a').composite_fields(NumberField(f2, 'b'),'c')
sage: Cs[0]
Number Field in c0 with defining polynomial x^36 + 6*x^35 + 15*x^34 - 4*x^33 - 111*x^32 - 274*x^31 + 582*x^30 + 4324*x^29 - 3789*x^28 - 54668*x^27 + 32320*x^26 + 856085*x^25 + 1298637*x^24 - 2417756*x^23 - 13665500*x^22 - 20951687*x^21 + 59477645*x^20 + 87168628*x^19 - 22215303*x^18 + 1087742856*x^17 + 818805906*x^16 - 6530512252*x^15 + 2925074857*x^14 + 34364936564*x^13 - 33537062600*x^12 - 118414559201*x^11 + 163183807491*x^10 + 260157742832*x^9 - 605914536*x^8 + 913639172503*x^7 + 2281698823419*x^6 - 2611018483575*x^5 - 9050720943737*x^4 - 6039450304329*x^3 + 11443636068924*x^2 + 6013419415005*x + 2666558286895
sage: %time Cs[0].relativize(Cs[0].subfields(6)[0][1], 'z')
CPU times: user 2.69 s, sys: 0.04 s, total: 2.73 s
Wall time: 2.88 s
Number Field in z0 with defining polynomial x^6 + (-10039053522/7502233115183347*c00^5 + 10877293823487/15004466230366694*c00^4 - 2360331495431769/15004466230366694*c00^3 + 128474733039101100/7502233115183347*c00^2 - 14065562373889051803/15004466230366694*c00 + 310508311372489830621/15004466230366694)*x^5 + (1684161096735/60017864921466776*c00^5 - 482099403293805/30008932460733388*c00^4 + 220599517382473455/60017864921466776*c00^3 - 25269626581733395995/60017864921466776*c00^2 + 727078349789696789565/30008932460733388*c00 - 33787826577687321855963/60017864921466776)*x^4 + (78399653403/15004466230366694*c00^5 - 20828815654522/7502233115183347*c00^4 + 8825176716960093/15004466230366694*c00^3 - 933213426139820735/15004466230366694*c00^2 + 24657212906331074698/7502233115183347*c00 - 1041516656628768048179/15004466230366694)*x^3 + (-801387260499/30008932460733388*c00^5 + 115968827806665/7502233115183347*c00^4 - 107159067879439581/30008932460733388*c00^3 + 12379376610271322667/30008932460733388*c00^2 - 179457468744004910316/7502233115183347*c00 + 16802522081228250322201/30008932460733388)*x^2 + (-1558518536591/60017864921466776*c00^5 + 444804027025213/30008932460733388*c00^4 - 202861597209142591/60017864921466776*c00^3 + 23151366405463607211/60017864921466776*c00^2 - 663271312652093373749/30008932460733388*c00 + 30664716263354572251675/60017864921466776)*x + c00 over its base field
- Improved efficiency of elliptic curve torsion computation (John Cremona) -- The speed-up of computing elliptic curve torsion can be up to 12%. The following timing statistics were obtained using the machine sage.math:
# BEFORE
sage: F.<z> = CyclotomicField(21)
sage: E = EllipticCurve([2,-z^7,-z^7,0,0])
sage: time E._p_primary_torsion_basis(7);
CPU times: user 9.87 s, sys: 0.07 s, total: 9.94 s
Wall time: 9.95 s
# AFTER
sage: F.<z> = CyclotomicField(21)
sage: E = EllipticCurve([2,-z^7,-z^7,0,0])
sage: time E._p_primary_torsion_basis(7,2);
CPU times: user 8.56 s, sys: 0.11 s, total: 8.67 s
Wall time: 8.67 s
- New method
odd_degree_model()
for hyperelliptic curves (Nick Alexander) -- The new methododd_degree_model()
in the classHyperellipticCurve_generic
ofsage/schemes/hyperelliptic_curves/hyperelliptic_generic.py
computes an odd degree model of a hyperelliptic curve. Here are some examples:
sage: x = QQ['x'].gen()
sage: H = HyperellipticCurve((x^2 + 2)*(x^2 + 3)*(x^2 + 5))
sage: K2 = QuadraticField(-2, 'a')
sage: H.change_ring(K2).odd_degree_model()
Hyperelliptic Curve over Number Field in a with defining polynomial x^2 + 2 defined by y^2 = 6*a*x^5 - 29*x^4 - 20*x^2 + 6*a*x + 1
sage: K3 = QuadraticField(-3, 'b')
sage: H.change_ring(QuadraticField(-3, 'b')).odd_degree_model()
Hyperelliptic Curve over Number Field in b with defining polynomial x^2 + 3 defined by y^2 = -4*b*x^5 - 14*x^4 - 20*b*x^3 - 35*x^2 + 6*b*x + 1
- Rational arguments in
kronecker_symbol()
andlegendre_symbol()
(Gonzalo Tornaria) -- The functionskronecker_symbol()
andlegendre_symbol()
insage/rings/arith.py
now support rational arguments. Here are some examples for working with rational arguments to these functions:
sage: kronecker(2/3,5)
1
sage: legendre_symbol(2/3,7)
-1
Packages
- Upgrade fpLLL to latest upstream release version 3.0.12 (Michael Abshoff).
- Update the NTL spkg to version ntl-5.4.2.p7 (Michael Abshoff).
- Downgrade the NetworkX spkg to version 0.36 (William Stein) -- The previous
networkx-0.99.p0.spkg
spkg contained both NetworkX 0.36, which Sage was using, and NetworkX 0.99. When installingnetworkx-0.99.p0.spkg
, only version 0.36 would be installed. This wastes disk space, and it confuses users. The current NetworkX package that's shipped by Sage only contains version 0.36. - Upgrade Symmetrica to latest upstream release version 2.0 (Michael Abshoff).
- Split off the Boost library from
polybori.spkg
(Michael Abshoff) -- Boost version 1.34.1 is now contained within its own spkg. - Switch from Clisp version 2.47 to ECL version 9.4.1 (Michael Abshoff).
- Upgrade MPIR to latest upstream release version 1.1.2 (William Stein).
- Upgrade Python to latest 2.5.x upstream release version 2.5.4 (Michael Abshoff, Mike Hansen).
P-adics
- Norm function in the
p
-adic ring (David Roe) -- New functionabs()
to calculate thep
-adic absolute value. This is normalized so that the absolute value ofp
is1/p
. This should be distinguished from the functionnorm()
, which computes the norm of ap
-adic element over a ground ring. Here are some examples of using the new functionabs()
:
sage: a = Qp(5)(15); a.abs()
1/5
sage: a.abs(53)
0.200000000000000
sage: R = Zp(5, 5)
sage: S.<x> = ZZ[]
sage: f = x^5 + 75*x^3 - 15*x^2 +125*x - 5
sage: W.<w> = R.ext(f)
sage: w.abs()
0.724779663677696
Quadratic Forms
- Major upgrade to the
QuadraticForm
local density routines (Jon Hanke) -- A complete rewrite of local densities routines, following a consistent interface (and algorithms) as described in this paper.
Symbolics
- Update Pynac to version 0.1.7 (Burcin Erocal).
- Switch from Maxima to Pynac for core symbolic manipulation (Mike Hansen, William Stein, Carl Witty, Robert Bradshaw).
Topology
- Random simplicial complexes (John Palmieri) -- New method
RandomComplex()
in the modulesage/homology/examples.py
for producing a randomd
-dimensional simplicial complex onn
vertices. Here's an example:
sage: simplicial_complexes.RandomComplex(6,12)
Simplicial complex with vertex set (0, 1, 2, 3, 4, 5, 6, 7) and facets {(0, 1, 2, 3, 4, 5, 6, 7)}
Full Changelog: 3.4.2...4.0