Skip to content

Commit

Permalink
Trac #22546: Improve combinatorial_automorphism_group in polyhedra class
Browse files Browse the repository at this point in the history
Currently, the `combinatorial_automorphism_group` method in the
polyhedron class returns a group isomorphic to the automorphism group of
the vertex-edge graph of the polyhedron. I propose to changes two the
method:

 (1) don't return a permutation group on the number `1, 2,..
self.n_vertices()`, but rather a permutation group on the actual objects
(vertices of the polyhedron)

 (2) wide the functionality to not only return the automorphism group of
the vertex-edge graph, but also of the vertex-facet graph.

The second improvement has the advantage that the automorphism group of
the vertex-facet graph is the same as the automorphism of the face
lattice.

Since the vertex-facet graph is also used in the related
`.is_combinatorially_isomorphic` method (see #22500) and it might be
useful on its own, it is now a seperate function.

URL: https://trac.sagemath.org/22546
Reported by: moritz
Ticket author(s): Moritz Firsching
Reviewer(s): Jean-Philippe Labbé
  • Loading branch information
Release Manager authored and vbraun committed Apr 5, 2017
2 parents fab799b + 128d28e commit 6288149
Showing 1 changed file with 159 additions and 46 deletions.
205 changes: 159 additions & 46 deletions src/sage/geometry/polyhedron/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,10 +459,89 @@ def _is_subpolyhedron(self, other):
sage: Q._is_subpolyhedron(P)
True
"""
return all( other_H.contains(self_V)
for other_H in other.Hrepresentation() \
return all(other_H.contains(self_V)
for other_H in other.Hrepresentation()
for self_V in self.Vrepresentation())

@cached_method
def vertex_facet_graph(self, labels=True):
r"""
Return the vertex-facet graph.
This function constructs a directed bipartite graph.
The nodes of the graph correspond to the vertices of the polyhedron
and the facets of the polyhedron. There is an directed edge
from a vertex to a face if and only if the vertex is incident to the face.
INPUT:
- ``labels`` -- boolean (default: ``True``); decide how the nodes
of the graph are labelled. Either with the original vertices/facets
of the Polyhedron or with integers.
OUTPUT:
- a bipartite DiGraph. If ``labels`` is ``True``, then the nodes
of the graph will actually be the vertices and facets of ``self``,
otherwise they will be integers.
.. SEEALSO::
:meth:`combinatorial_automorphism_group`,
:meth:`is_combinatorially_isomorphic`.
EXAMPLES::
sage: P = polytopes.cube()
sage: G = P.vertex_facet_graph(); G
Digraph on 14 vertices
sage: G.vertices(key = lambda v: str(v))
[A vertex at (-1, -1, -1),
A vertex at (-1, -1, 1),
A vertex at (-1, 1, -1),
A vertex at (-1, 1, 1),
A vertex at (1, -1, -1),
A vertex at (1, -1, 1),
A vertex at (1, 1, -1),
A vertex at (1, 1, 1),
An inequality (-1, 0, 0) x + 1 >= 0,
An inequality (0, -1, 0) x + 1 >= 0,
An inequality (0, 0, -1) x + 1 >= 0,
An inequality (0, 0, 1) x + 1 >= 0,
An inequality (0, 1, 0) x + 1 >= 0,
An inequality (1, 0, 0) x + 1 >= 0]
sage: G.automorphism_group().is_isomorphic(P.face_lattice().hasse_diagram().automorphism_group())
True
sage: O = polytopes.octahedron(); O
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
sage: O.vertex_facet_graph()
Digraph on 14 vertices
sage: H = O.vertex_facet_graph()
sage: G.is_isomorphic(H)
False
sage: G.reverse_edges(G.edges())
sage: G.is_isomorphic(H)
True
"""

# We construct the edges and remove the columns that have all 1s;
# those correspond to faces, that contain all vertices (which happens
# if the polyhedron is not full-dimensional)
G = DiGraph()
if labels:
edges = [[v, f] for f in self.Hrep_generator()
if any(not(f.is_incident(v)) for v in self.Vrep_generator())
for v in self.vertices() if f.is_incident(v)]
else:
# here we obtain this incidence information from the incidence matrix
M = self.incidence_matrix()
edges = [[i, M.ncols()+j] for i, column in enumerate(M.columns())
if any(entry != 1 for entry in column)
for j in range(M.nrows()) if M[j, i] == 1]
G.add_edges(edges)
return G

def plot(self,
point=None, line=None, polygon=None, # None means unspecified by the user
wireframe='blue', fill='green',
Expand Down Expand Up @@ -5043,49 +5122,96 @@ def integral_points(self, threshold=100000):
return tuple(points)

@cached_method
def combinatorial_automorphism_group(self):
def combinatorial_automorphism_group(self, vertex_graph_only=False):
"""
Computes the combinatorial automorphism group of the vertex
graph of the polyhedron.
Computes the combinatorial automorphism group.
If ``vertex_graph_only`` is ``True``, the automorphism group
of the vertex-edge graph of the polyhedron is returned. Otherwise
the automorphism group of the vertex-facet graph, which is
isomorphic to the automorphism group of the face lattice is returned.
INPUT:
- ``vertex_graph_only`` -- boolean (default: ``False``); whether
to return the automorphism group of the vertex edges graph or
of the lattice.
OUTPUT:
A
:class:`PermutationGroup<sage.groups.perm_gps.permgroup.PermutationGroup_generic>`
:class:`PermutationGroup<sage.groups.perm_gps.permgroup.PermutationGroup_generic_with_category'>`
that is isomorphic to the combinatorial automorphism group is
returned.
Note that in Sage, permutation groups always act on positive
integers while ``self.Vrepresentation()`` is indexed by
nonnegative integers. The indexing of the permutation group is
chosen to be shifted by ``+1``. That is, ``i`` in the
permutation group corresponds to the V-representation object
``self.Vrepresentation(i-1)``.
- if ``vertex_graph_only`` is ``True``:
The automorphism group of the vertex-edge graph of the polyhedron
- if ``vertex_graph_only`` is ``False`` (default):
The automorphism group of the vertex-facet graph of the polyhedron,
see :meth:`vertex_facet_graph`. This group is isomorphic to the
automorphism group of the face lattice of the polyhedron.
NOTE:
Depending on ``vertex_graph_only``, this method returns groups
that are not neccessarily isomorphic, see the examples below.
.. SEEALSO::
:meth:`is_combinatorially_isomorphic`,
:meth:`graph`,
:meth:`vertex_facet_graph`.
EXAMPLES::
sage: quadrangle = Polyhedron(vertices=[(0,0),(1,0),(0,1),(2,3)])
sage: quadrangle.combinatorial_automorphism_group()
Permutation Group with generators [(2,3), (1,2)(3,4)]
sage: quadrangle.combinatorial_automorphism_group().is_isomorphic(groups.permutation.Dihedral(4))
True
sage: quadrangle.restricted_automorphism_group()
Permutation Group with generators [()]
Permutations can only exchange vertices with vertices, rays
with rays, and lines with lines::
sage: P = Polyhedron(vertices=[(1,0,0), (1,1,0)], rays=[(1,0,0)], lines=[(0,0,1)])
sage: P.combinatorial_automorphism_group()
Permutation Group with generators [(3,4)]
"""
G = Graph()
for u,v in self.vertex_graph().edges(labels=False):
i = u.index()
j = v.index()
G.add_edge(i+1, j+1, (u.type(), v.type()) )
sage: P.combinatorial_automorphism_group(vertex_graph_only=True)
Permutation Group with generators [(A vertex at (1,0,0),A vertex at (1,1,0))]
This shows an example of two polytopes whose vertex-edge graphs are isomorphic,
but their face_lattices are not isomorphic::
sage: Q=Polyhedron([[-123984206864/2768850730773, -101701330976/922950243591, -64154618668/2768850730773, -2748446474675/2768850730773],
....: [-11083969050/98314591817, -4717557075/98314591817, -32618537490/98314591817, -91960210208/98314591817],
....: [-9690950/554883199, -73651220/554883199, 1823050/554883199, -549885101/554883199], [-5174928/72012097, 5436288/72012097, -37977984/72012097, 60721345/72012097],
....: [-19184/902877, 26136/300959, -21472/902877, 899005/902877], [53511524/1167061933, 88410344/1167061933, 621795064/1167061933, 982203941/1167061933],
....: [4674489456/83665171433, -4026061312/83665171433, 28596876672/83665171433, -78383796375/83665171433], [857794884940/98972360190089, -10910202223200/98972360190089, 2974263671400/98972360190089, -98320463346111/98972360190089]])
sage: C = polytopes.cyclic_polytope(4,8)
sage: C.is_combinatorially_isomorphic(Q)
False
sage: C.combinatorial_automorphism_group(vertex_graph_only=True).is_isomorphic(Q.combinatorial_automorphism_group(vertex_graph_only=True))
True
sage: C.combinatorial_automorphism_group(vertex_graph_only=False).is_isomorphic(Q.combinatorial_automorphism_group(vertex_graph_only=False))
False
The automorphism group of the face lattice is isomorphic to the combinatorial automorphism group::
sage: CG = C.face_lattice().hasse_diagram().automorphism_group()
sage: C.combinatorial_automorphism_group().is_isomorphic(CG)
True
sage: QG = Q.face_lattice().hasse_diagram().automorphism_group()
sage: Q.combinatorial_automorphism_group().is_isomorphic(QG)
True
"""
if vertex_graph_only:
G = self.graph()
else:
G = self.vertex_facet_graph()
group = G.automorphism_group(edge_labels=True)
self._combinatorial_automorphism_group = group
return group

return self._combinatorial_automorphism_group

@cached_method
def restricted_automorphism_group(self, output="abstract"):
Expand Down Expand Up @@ -5460,12 +5586,17 @@ def is_combinatorially_isomorphic(self, other, algorithm='bipartite_graph'):
OUTPUT:
- ``True`` if the two polyhedra are combinatorially isomorphic
- ``False`` otherwise
- ``True`` if the two polyhedra are combinatorially isomorphic
- ``False`` otherwise
.. SEEALSO::
:meth:`combinatorial_automorphism_group`,
:meth:`vertex_facet_graph`.
REFERENCES:
For the equivalence of the two algorithms see [KK1995]_, p. 877-878
For the equivalence of the two algorithms see [KK1995]_, p. 877-878
EXAMPLES:
Expand Down Expand Up @@ -5563,26 +5694,8 @@ def is_combinatorially_isomorphic(self, other, algorithm='bipartite_graph'):
return False

if algorithm == 'bipartite_graph':

def get_incidences(P):
# This function constructs a directed bipartite graph.
# The nodes of the graph are the vertices of the polyhedron
# and the facets of the polyhedron. There is an directed edge
# from a vertex to a face if the vertex is contained in the face.
# We obtain this incidence information from the incidence matrix
G = DiGraph()
M = P.incidence_matrix()
# We construct the edges and remove the columns that have all 1s;
# those correspond to faces, that contain all vertices (which happens
# if the polyhedron is not full-dimensional)
edges = [[i, M.ncols()+j] for i, column in enumerate(M.columns())
if any(entry != 1 for entry in column)
for j in range(M.nrows()) if M[j, i] == 1]
G.add_edges(edges)
return G

G_self = get_incidences(self)
G_other = get_incidences(other)
G_self = self.vertex_facet_graph(False)
G_other = other.vertex_facet_graph(False)

return G_self.is_isomorphic(G_other)
else:
Expand Down

0 comments on commit 6288149

Please sign in to comment.