Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Define extended GCD, combined GCD+LCM #19

Merged
merged 9 commits into from
Apr 25, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
211 changes: 204 additions & 7 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ extern crate std;

extern crate num_traits as traits;

use core::mem;
use core::ops::Add;

use traits::{Num, Signed, Zero};
Expand Down Expand Up @@ -95,6 +96,89 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// ~~~
fn lcm(&self, other: &Self) -> Self;

/// Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) together.
///
/// Potentially more efficient than calling `gcd` and `lcm`
/// individually for identical inputs.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(10.gcd_lcm(&4), (2, 20));
/// assert_eq!(8.gcd_lcm(&9), (1, 72));
/// ~~~
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
(self.gcd(other), self.lcm(other))
}

/// Greatest common divisor and Bézout coefficients.
///
/// # Examples
///
/// ~~~
/// # extern crate num_integer;
/// # extern crate num_traits;
/// # fn main() {
/// # use num_integer::{ExtendedGcd, Integer};
/// # use num_traits::NumAssign;
/// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
/// let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
/// gcd == x * a + y * b
/// }
/// assert!(check(10isize, 4isize));
/// assert!(check(8isize, 9isize));
/// # }
/// ~~~
#[inline]
fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
where
Self: Clone,
{
let mut s = (Self::zero(), Self::one());
let mut t = (Self::one(), Self::zero());
let mut r = (other.clone(), self.clone());

while !r.0.is_zero() {
let q = r.1.clone() / r.0.clone();
let f = |mut r: (Self, Self)| {
mem::swap(&mut r.0, &mut r.1);
r.0 = r.0 - q.clone() * r.1.clone();
r
};
r = f(r);
s = f(s);
t = f(t);
}

if r.1 >= Self::zero() {
ExtendedGcd {
gcd: r.1,
x: s.1,
y: t.1,
_hidden: (),
}
} else {
ExtendedGcd {
gcd: Self::zero() - r.1,
x: Self::zero() - s.1,
y: Self::zero() - t.1,
_hidden: (),
}
}
}

/// Greatest common divisor, least common multiple, and Bézout coefficients.
#[inline]
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
where
Self: Clone + Signed,
{
(self.extended_gcd(other), self.lcm(other))
}

/// Deprecated, use `is_multiple_of` instead.
fn divides(&self, other: &Self) -> bool;

Expand Down Expand Up @@ -173,6 +257,20 @@ pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
}
}

/// Greatest common divisor and Bézout coefficients
///
/// ```no_build
/// let e = isize::extended_gcd(a, b);
/// assert_eq!(e.gcd, e.x*a + e.y*b);
/// ```
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ExtendedGcd<A> {
pub gcd: A,
pub x: A,
pub y: A,
_hidden: (),
}

/// Simultaneous integer division and modulus
#[inline]
pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
Expand Down Expand Up @@ -206,6 +304,13 @@ pub fn lcm<T: Integer>(x: T, y: T) -> T {
x.lcm(&y)
}

/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline(always)]
pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
x.gcd_lcm(&y)
}

macro_rules! impl_integer_for_isize {
($T:ty, $test_mod:ident) => {
impl Integer for $T {
Expand Down Expand Up @@ -294,16 +399,36 @@ macro_rules! impl_integer_for_isize {
m << shift
}

#[inline]
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
let egcd = self.extended_gcd(other);
// should not have to recalculate abs
let lcm = if egcd.gcd.is_zero() {
Self::zero()
} else {
(*self * (*other / egcd.gcd)).abs()
};
(egcd, lcm)
}

/// Calculates the Lowest Common Multiple (LCM) of the number and
/// `other`.
#[inline]
fn lcm(&self, other: &Self) -> Self {
self.gcd_lcm(other).1
}

/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
if self.is_zero() && other.is_zero() {
Self::zero()
} else {
// should not have to recalculate abs
(*self * (*other / self.gcd(other))).abs()
return (Self::zero(), Self::zero());
}
let gcd = self.gcd(other);
// should not have to recalculate abs
let lcm = (*self * (*other / gcd)).abs();
(gcd, lcm)
}

/// Deprecated, use `is_multiple_of` instead.
Expand Down Expand Up @@ -488,6 +613,49 @@ macro_rules! impl_integer_for_isize {
assert_eq!((11 as $T).lcm(&5), 55 as $T);
}

#[test]
fn test_gcd_lcm() {
use core::iter::once;
for i in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
for j in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
}
}
}

#[test]
fn test_extended_gcd_lcm() {
use core::fmt::Debug;
use traits::NumAssign;
use ExtendedGcd;

fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
assert_eq!(gcd, x * a + y * b);
}

use core::iter::once;
for i in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
for j in once(0)
.chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
.chain(once(-128))
{
check(i, j);
let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
}
}
}

#[test]
fn test_even() {
assert_eq!((-4 as $T).is_even(), true);
Expand Down Expand Up @@ -569,14 +737,34 @@ macro_rules! impl_integer_for_usize {
m << shift
}

#[inline]
fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
let egcd = self.extended_gcd(other);
// should not have to recalculate abs
let lcm = if egcd.gcd.is_zero() {
Self::zero()
} else {
*self * (*other / egcd.gcd)
};
(egcd, lcm)
}

/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &Self) -> Self {
self.gcd_lcm(other).1
}

/// Calculates the Greatest Common Divisor (GCD) and
/// Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
if self.is_zero() && other.is_zero() {
Self::zero()
} else {
*self * (*other / self.gcd(other))
return (Self::zero(), Self::zero());
}
let gcd = self.gcd(other);
let lcm = *self * (*other / gcd);
(gcd, lcm)
}

/// Deprecated, use `is_multiple_of` instead.
Expand Down Expand Up @@ -672,6 +860,15 @@ macro_rules! impl_integer_for_usize {
assert_eq!((15 as $T).lcm(&17), 255 as $T);
}

#[test]
fn test_gcd_lcm() {
for i in (0..).take(256) {
for j in (0..).take(256) {
assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
}
}
}

#[test]
fn test_is_multiple_of() {
assert!((6 as $T).is_multiple_of(&(6 as $T)));
Expand Down