Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add BigInt::modpow #18

Merged
merged 1 commit into from
Feb 9, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions src/bigint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1735,6 +1735,33 @@ impl BigInt {
}
return Some(self.div(v));
}

/// Returns `(self ^ exponent) mod modulus`
///
/// Note that this rounds like `mod_floor`, not like the `%` operator,
/// which makes a difference when given a negative `self` or `modulus`.
/// The result will be in the interval `[0, modulus)` for `modulus > 0`,
/// or in the interval `(modulus, 0]` for `modulus < 0`
///
/// Panics if the exponent is negative or the modulus is zero.
pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self {
assert!(!exponent.is_negative(), "negative exponentiation is not supported!");
assert!(!modulus.is_zero(), "divide by zero!");

let result = self.data.modpow(&exponent.data, &modulus.data);
if result.is_zero() {
return BigInt::zero();
}

// The sign of the result follows the modulus, like `mod_floor`.
let (sign, mag) = match (self.is_negative(), modulus.is_negative()) {
(false, false) => (Plus, result),
(true, false) => (Plus, &modulus.data - result),
(false, true) => (Minus, &modulus.data - result),
(true, true) => (Minus, result),
};
BigInt::from_biguint(sign, mag)
}
}

/// Perform in-place two's complement of the given binary representation,
Expand Down
2 changes: 2 additions & 0 deletions src/biguint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1655,6 +1655,8 @@ impl BigUint {
}

/// Returns `(self ^ exponent) % modulus`.
///
/// Panics if the modulus is zero.
pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self {
assert!(!modulus.is_zero(), "divide by zero!");

Expand Down
83 changes: 0 additions & 83 deletions src/tests/biguint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1089,89 +1089,6 @@ fn test_is_even() {
assert!(((&one << 64) + one).is_odd());
}

#[test]
fn test_modpow() {
fn check(b: usize, e: usize, m: usize, r: usize) {
let big_b = BigUint::from(b);
let big_e = BigUint::from(e);
let big_m = BigUint::from(m);
let big_r = BigUint::from(r);

assert_eq!(big_b.modpow(&big_e, &big_m), big_r);

let even_m = &big_m << 1;
let even_modpow = big_b.modpow(&big_e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow % big_m, big_r);
}

check(1, 0, 11, 1);
check(0, 15, 11, 0);
check(3, 7, 11, 9);
check(5, 117, 19, 1);
}

#[test]
fn test_modpow_big() {
let b = BigUint::from_str_radix("\
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
b4edf9cc_6ce540be_76229093_5c53893b", 16).unwrap();
let e = BigUint::from_str_radix("\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
17946850_2ddb1822_117b68a0_32f7db88", 16).unwrap();
// This modulus is the prime from the 2048-bit MODP DH group:
// https://tools.ietf.org/html/rfc3526#section-3
let m = BigUint::from_str_radix("\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF", 16).unwrap();
let r = BigUint::from_str_radix("\
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
109c4735_6e7db425_7b5d74c7_0b709508", 16).unwrap();

assert_eq!(b.modpow(&e, &m), r);

let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow % m, r);
}

fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> {
let bits = big_digit::BITS;
vec![(Zero::zero(),
Expand Down
150 changes: 150 additions & 0 deletions tests/modpow.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;

static BIG_B: &'static str = "\
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\
b4edf9cc_6ce540be_76229093_5c53893b";

static BIG_E: &'static str = "\
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\
17946850_2ddb1822_117b68a0_32f7db88";

// This modulus is the prime from the 2048-bit MODP DH group:
// https://tools.ietf.org/html/rfc3526#section-3
static BIG_M: &'static str = "\
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF";

static BIG_R: &'static str = "\
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\
109c4735_6e7db425_7b5d74c7_0b709508";

mod biguint {
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::Num;

fn check_modpow<T: Into<BigUint>>(b: T, e: T, m: T, r: T) {
let b: BigUint = b.into();
let e: BigUint = e.into();
let m: BigUint = m.into();
let r: BigUint = r.into();

assert_eq!(b.modpow(&e, &m), r);

let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow.mod_floor(&m), r);
}

#[test]
fn test_modpow() {
check_modpow::<u32>(1, 0, 11, 1);
check_modpow::<u32>(0, 15, 11, 0);
check_modpow::<u32>(3, 7, 11, 9);
check_modpow::<u32>(5, 117, 19, 1);
}

#[test]
fn test_modpow_big() {
let b = BigUint::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigUint::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigUint::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigUint::from_str_radix(super::BIG_R, 16).unwrap();

assert_eq!(b.modpow(&e, &m), r);

let even_m = &m << 1;
let even_modpow = b.modpow(&e, &even_m);
assert!(even_modpow < even_m);
assert_eq!(even_modpow % m, r);
}
}

mod bigint {
use num_bigint::BigInt;
use num_integer::Integer;
use num_traits::{Num, Zero, One, Signed};

fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) {
fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) {
assert_eq!(&b.modpow(e, m), r);

let even_m = m << 1;
let even_modpow = b.modpow(e, m);
assert!(even_modpow.abs() < even_m.abs());
assert_eq!(&even_modpow.mod_floor(&m), r);

// the sign of the result follows the modulus like `mod_floor`, not `rem`
assert_eq!(b.modpow(&BigInt::one(), m), b.mod_floor(m));
}

let b: BigInt = b.into();
let e: BigInt = e.into();
let m: BigInt = m.into();
let r: BigInt = r.into();

let neg_r = if r.is_zero() { BigInt::zero() } else { &m - &r };

check(&b, &e, &m, &r);
check(&-&b, &e, &m, &neg_r);
check(&b, &e, &-&m, &-neg_r);
check(&-b, &e, &-m, &-r);
}

#[test]
fn test_modpow() {
check_modpow(1, 0, 11, 1);
check_modpow(0, 15, 11, 0);
check_modpow(3, 7, 11, 9);
check_modpow(5, 117, 19, 1);
}

#[test]
fn test_modpow_big() {
let b = BigInt::from_str_radix(super::BIG_B, 16).unwrap();
let e = BigInt::from_str_radix(super::BIG_E, 16).unwrap();
let m = BigInt::from_str_radix(super::BIG_M, 16).unwrap();
let r = BigInt::from_str_radix(super::BIG_R, 16).unwrap();

check_modpow(b, e, m, r);
}
}