-
Notifications
You must be signed in to change notification settings - Fork 192
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This performs modular exponentiation on signed `BigInt`. The exponent must be positive, and the modulus must be non-zero. The implementation leverages `BigUint::modpow`, fixing the signs as needed afterward.
- Loading branch information
Showing
4 changed files
with
179 additions
and
83 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,150 @@ | ||
extern crate num_bigint; | ||
extern crate num_integer; | ||
extern crate num_traits; | ||
|
||
static BIG_B: &'static str = "\ | ||
efac3c0a_0de55551_fee0bfe4_67fa017a_1a898fa1_6ca57cb1\ | ||
ca9e3248_cacc09a9_b99d6abc_38418d0f_82ae4238_d9a68832\ | ||
aadec7c1_ac5fed48_7a56a71b_67ac59d5_afb28022_20d9592d\ | ||
247c4efc_abbd9b75_586088ee_1dc00dc4_232a8e15_6e8191dd\ | ||
675b6ae0_c80f5164_752940bc_284b7cee_885c1e10_e495345b\ | ||
8fbe9cfd_e5233fe1_19459d0b_d64be53c_27de5a02_a829976b\ | ||
33096862_82dad291_bd38b6a9_be396646_ddaf8039_a2573c39\ | ||
1b14e8bc_2cb53e48_298c047e_d9879e9c_5a521076_f0e27df3\ | ||
990e1659_d3d8205b_6443ebc0_9918ebee_6764f668_9f2b2be3\ | ||
b59cbc76_d76d0dfc_d737c3ec_0ccf9c00_ad0554bf_17e776ad\ | ||
b4edf9cc_6ce540be_76229093_5c53893b"; | ||
|
||
static BIG_E: &'static str = "\ | ||
be0e6ea6_08746133_e0fbc1bf_82dba91e_e2b56231_a81888d2\ | ||
a833a1fc_f7ff002a_3c486a13_4f420bf3_a5435be9_1a5c8391\ | ||
774d6e6c_085d8357_b0c97d4d_2bb33f7c_34c68059_f78d2541\ | ||
eacc8832_426f1816_d3be001e_b69f9242_51c7708e_e10efe98\ | ||
449c9a4a_b55a0f23_9d797410_515da00d_3ea07970_4478a2ca\ | ||
c3d5043c_bd9be1b4_6dce479d_4302d344_84a939e6_0ab5ada7\ | ||
12ae34b2_30cc473c_9f8ee69d_2cac5970_29f5bf18_bc8203e4\ | ||
f3e895a2_13c94f1e_24c73d77_e517e801_53661fdd_a2ce9e47\ | ||
a73dd7f8_2f2adb1e_3f136bf7_8ae5f3b8_08730de1_a4eff678\ | ||
e77a06d0_19a522eb_cbefba2a_9caf7736_b157c5c6_2d192591\ | ||
17946850_2ddb1822_117b68a0_32f7db88"; | ||
|
||
// This modulus is the prime from the 2048-bit MODP DH group: | ||
// https://tools.ietf.org/html/rfc3526#section-3 | ||
static BIG_M: &'static str = "\ | ||
FFFFFFFF_FFFFFFFF_C90FDAA2_2168C234_C4C6628B_80DC1CD1\ | ||
29024E08_8A67CC74_020BBEA6_3B139B22_514A0879_8E3404DD\ | ||
EF9519B3_CD3A431B_302B0A6D_F25F1437_4FE1356D_6D51C245\ | ||
E485B576_625E7EC6_F44C42E9_A637ED6B_0BFF5CB6_F406B7ED\ | ||
EE386BFB_5A899FA5_AE9F2411_7C4B1FE6_49286651_ECE45B3D\ | ||
C2007CB8_A163BF05_98DA4836_1C55D39A_69163FA8_FD24CF5F\ | ||
83655D23_DCA3AD96_1C62F356_208552BB_9ED52907_7096966D\ | ||
670C354E_4ABC9804_F1746C08_CA18217C_32905E46_2E36CE3B\ | ||
E39E772C_180E8603_9B2783A2_EC07A28F_B5C55DF0_6F4C52C9\ | ||
DE2BCBF6_95581718_3995497C_EA956AE5_15D22618_98FA0510\ | ||
15728E5A_8AACAA68_FFFFFFFF_FFFFFFFF"; | ||
|
||
static BIG_R: &'static str = "\ | ||
a1468311_6e56edc9_7a98228b_5e924776_0dd7836e_caabac13\ | ||
eda5373b_4752aa65_a1454850_40dc770e_30aa8675_6be7d3a8\ | ||
9d3085e4_da5155cf_b451ef62_54d0da61_cf2b2c87_f495e096\ | ||
055309f7_77802bbb_37271ba8_1313f1b5_075c75d1_024b6c77\ | ||
fdb56f17_b05bce61_e527ebfd_2ee86860_e9907066_edd526e7\ | ||
93d289bf_6726b293_41b0de24_eff82424_8dfd374b_4ec59542\ | ||
35ced2b2_6b195c90_10042ffb_8f58ce21_bc10ec42_64fda779\ | ||
d352d234_3d4eaea6_a86111ad_a37e9555_43ca78ce_2885bed7\ | ||
5a30d182_f1cf6834_dc5b6e27_1a41ac34_a2e91e11_33363ff0\ | ||
f88a7b04_900227c9_f6e6d06b_7856b4bb_4e354d61_060db6c8\ | ||
109c4735_6e7db425_7b5d74c7_0b709508"; | ||
|
||
mod biguint { | ||
use num_bigint::BigUint; | ||
use num_integer::Integer; | ||
use num_traits::Num; | ||
|
||
fn check_modpow<T: Into<BigUint>>(b: T, e: T, m: T, r: T) { | ||
let b: BigUint = b.into(); | ||
let e: BigUint = e.into(); | ||
let m: BigUint = m.into(); | ||
let r: BigUint = r.into(); | ||
|
||
assert_eq!(b.modpow(&e, &m), r); | ||
|
||
let even_m = &m << 1; | ||
let even_modpow = b.modpow(&e, &even_m); | ||
assert!(even_modpow < even_m); | ||
assert_eq!(even_modpow.mod_floor(&m), r); | ||
} | ||
|
||
#[test] | ||
fn test_modpow() { | ||
check_modpow::<u32>(1, 0, 11, 1); | ||
check_modpow::<u32>(0, 15, 11, 0); | ||
check_modpow::<u32>(3, 7, 11, 9); | ||
check_modpow::<u32>(5, 117, 19, 1); | ||
} | ||
|
||
#[test] | ||
fn test_modpow_big() { | ||
let b = BigUint::from_str_radix(super::BIG_B, 16).unwrap(); | ||
let e = BigUint::from_str_radix(super::BIG_E, 16).unwrap(); | ||
let m = BigUint::from_str_radix(super::BIG_M, 16).unwrap(); | ||
let r = BigUint::from_str_radix(super::BIG_R, 16).unwrap(); | ||
|
||
assert_eq!(b.modpow(&e, &m), r); | ||
|
||
let even_m = &m << 1; | ||
let even_modpow = b.modpow(&e, &even_m); | ||
assert!(even_modpow < even_m); | ||
assert_eq!(even_modpow % m, r); | ||
} | ||
} | ||
|
||
mod bigint { | ||
use num_bigint::BigInt; | ||
use num_integer::Integer; | ||
use num_traits::{Num, Zero, One, Signed}; | ||
|
||
fn check_modpow<T: Into<BigInt>>(b: T, e: T, m: T, r: T) { | ||
fn check(b: &BigInt, e: &BigInt, m: &BigInt, r: &BigInt) { | ||
assert_eq!(&b.modpow(e, m), r); | ||
|
||
let even_m = m << 1; | ||
let even_modpow = b.modpow(e, m); | ||
assert!(even_modpow.abs() < even_m.abs()); | ||
assert_eq!(&even_modpow.mod_floor(&m), r); | ||
|
||
// the sign of the result follows the modulus like `mod_floor`, not `rem` | ||
assert_eq!(b.modpow(&BigInt::one(), m), b.mod_floor(m)); | ||
} | ||
|
||
let b: BigInt = b.into(); | ||
let e: BigInt = e.into(); | ||
let m: BigInt = m.into(); | ||
let r: BigInt = r.into(); | ||
|
||
let neg_r = if r.is_zero() { BigInt::zero() } else { &m - &r }; | ||
|
||
check(&b, &e, &m, &r); | ||
check(&-&b, &e, &m, &neg_r); | ||
check(&b, &e, &-&m, &-neg_r); | ||
check(&-b, &e, &-m, &-r); | ||
} | ||
|
||
#[test] | ||
fn test_modpow() { | ||
check_modpow(1, 0, 11, 1); | ||
check_modpow(0, 15, 11, 0); | ||
check_modpow(3, 7, 11, 9); | ||
check_modpow(5, 117, 19, 1); | ||
} | ||
|
||
#[test] | ||
fn test_modpow_big() { | ||
let b = BigInt::from_str_radix(super::BIG_B, 16).unwrap(); | ||
let e = BigInt::from_str_radix(super::BIG_E, 16).unwrap(); | ||
let m = BigInt::from_str_radix(super::BIG_M, 16).unwrap(); | ||
let r = BigInt::from_str_radix(super::BIG_R, 16).unwrap(); | ||
|
||
check_modpow(b, e, m, r); | ||
} | ||
} |