Skip to content

Commit

Permalink
Implement optimized sqrt, cbrt methods
Browse files Browse the repository at this point in the history
This commit overrides default implementations of
Roots::sqrt and Roots::cbrt for BigInt and BigUint
with optimized ones. It also improves tests and
resolves minor inconsistencies.

Signed-off-by: Manca Bizjak <manca.bizjak@xlab.si>
  • Loading branch information
mancabizjak committed Jul 13, 2018
1 parent 1f25906 commit 990a520
Show file tree
Hide file tree
Showing 4 changed files with 127 additions and 58 deletions.
11 changes: 3 additions & 8 deletions benches/bigint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ use std::mem::replace;
use test::Bencher;
use num_bigint::{BigInt, BigUint, RandBigInt};
use num_traits::{Zero, One, FromPrimitive, Num};
use rand::{SeedableRng, StdRng, Rng};
use rand::{SeedableRng, StdRng};

fn get_rng() -> StdRng {
let mut seed = [0; 32];
Expand Down Expand Up @@ -361,14 +361,9 @@ fn roots_cbrt(b: &mut Bencher) {
}

#[bench]
fn roots_nth(b: &mut Bencher) {
fn roots_nth_100(b: &mut Bencher) {
let mut rng = get_rng();
let x = rng.gen_biguint(2048);
// Although n is u32, here we limit it to the set of u8 values since it
// hugely impacts the performance of nth_root due to exponentiation to
// the power of n-1. Using very large values for n is also not very realistic,
// and any n > x's bit size produces 1 as a result anyway.
let n: u8 = rng.gen();

b.iter(|| { x.nth_root(n as u32) });
b.iter(|| x.nth_root(100));
}
12 changes: 11 additions & 1 deletion src/bigint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1805,10 +1805,20 @@ impl Integer for BigInt {
impl Roots for BigInt {
fn nth_root(&self, n: u32) -> Self {
assert!(!(self.is_negative() && n.is_even()),
"n-th root is undefined for number (n={})", n);
"root of degree {} is imaginary", n);

BigInt::from_biguint(self.sign, self.data.nth_root(n))
}

fn sqrt(&self) -> Self {
assert!(!self.is_negative(), "square root is imaginary");

BigInt::from_biguint(self.sign, self.data.sqrt())
}

fn cbrt(&self) -> Self {
BigInt::from_biguint(self.sign, self.data.cbrt())
}
}

impl ToPrimitive for BigInt {
Expand Down
88 changes: 66 additions & 22 deletions src/biguint.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1027,32 +1027,30 @@ impl Integer for BigUint {
}

impl Roots for BigUint {
fn nth_root(&self, n: u32) -> Self {
assert!(n > 0, "n must be at least 1");
// nth_root, sqrt and cbrt use Newton's method to compute
// principal root of a given degree for a given integer.

let one = BigUint::one();
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.14
fn nth_root(&self, n: u32) -> Self {
assert!(n > 0, "root degree n must be at least 1");

// Trivial cases
if self.is_zero() {
return BigUint::zero();
if self.is_zero() || self.is_one() {
return self.clone()
}

if self.is_one() {
return one;
match n { // Optimize for small n
1 => return self.clone(),
2 => return self.sqrt(),
3 => return self.cbrt(),
_ => (),
}

let n = n as usize;
let n_min_1 = (n as usize) - 1;

// Newton's method to compute the nth root of an integer.
//
// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.14
//
// Set initial guess to something definitely >= floor(nth_root of self)
// but as low as possible to speed up convergence.
let n_min_1 = n - 1;

let bit_len = self.len() * big_digit::BITS;
let guess = one << (bit_len/n + 1);
let guess = BigUint::one() << (bit_len/n + 1);

let mut u = guess;
let mut s: BigUint;
Expand All @@ -1062,14 +1060,61 @@ impl Roots for BigUint {
let q = self / pow(s.clone(), n_min_1);
let t: BigUint = n_min_1 * &s + q;

// Compute the candidate value for next iteration
u = t / n;

if u >= s { break; }
}

s
}

// Reference:
// Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13
fn sqrt(&self) -> Self {
if self.is_zero() || self.is_one() {
return self.clone()
}

let bit_len = self.len() * big_digit::BITS;
let guess = BigUint::one() << (bit_len/2 + 1);

let mut u = guess;
let mut s: BigUint;

loop {
s = u;
let q = self / &s;
let t: BigUint = &s + q;
u = t >> 1;

if u >= s { break; }
}

s
}

fn cbrt(&self) -> Self {
if self.is_zero() || self.is_one() {
return self.clone()
}

let bit_len = self.len() * big_digit::BITS;
let guess = BigUint::one() << (bit_len/3 + 1);

let mut u = guess;
let mut s: BigUint;

loop {
s = u;
let q = self / (&s * &s);
let t: BigUint = (&s << 1) + q;
u = t / 3u32;

if u >= s { break; }
}

s
}
}

fn high_bits_to_u64(v: &BigUint) -> u64 {
Expand Down Expand Up @@ -1797,8 +1842,7 @@ impl BigUint {
}

/// Returns the truncated principal square root of `self` --
/// see [Roots::sqrt](Roots::sqrt).
// struct.BigInt.html#trait.Roots
/// see [Roots::sqrt](Roots::sqrt)
pub fn sqrt(&self) -> Self {
Roots::sqrt(self)
}
Expand All @@ -1810,7 +1854,7 @@ impl BigUint {
}

/// Returns the truncated principal `n`th root of `self` --
/// See [Roots::nth_root](Roots::nth_root).
/// see [Roots::nth_root](Roots::nth_root).
pub fn nth_root(&self, n: u32) -> Self {
Roots::nth_root(self, n)
}
Expand Down
74 changes: 47 additions & 27 deletions tests/roots.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,81 +4,101 @@ extern crate num_traits;

mod biguint {
use num_bigint::BigUint;
use num_traits::FromPrimitive;
use num_traits::pow;
use std::str::FromStr;

fn check(x: i32, n: u32, expected: i32) {
let big_x: BigUint = FromPrimitive::from_i32(x).unwrap();
let big_expected: BigUint = FromPrimitive::from_i32(expected).unwrap();
fn check(x: u64, n: u32) {
let big_x = BigUint::from(x);
let res = big_x.nth_root(n);

assert_eq!(big_x.nth_root(n), big_expected);
if n == 2 {
assert_eq!(&res, &big_x.sqrt())
} else if n == 3 {
assert_eq!(&res, &big_x.cbrt())
}

assert!(pow(res.clone(), n as usize) <= big_x);
assert!(pow(res.clone() + 1u32, n as usize) > big_x);
}

#[test]
fn test_sqrt() {
check(99, 2, 9);
check(100, 2, 10);
check(120, 2, 10);
check(99, 2);
check(100, 2);
check(120, 2);
}

#[test]
fn test_cbrt() {
check(8, 3, 2);
check(26, 3, 2);
check(8, 3);
check(26, 3);
}

#[test]
fn test_nth_root() {
check(0, 1, 0);
check(10, 1, 10);
check(100, 4, 3);
check(0, 1);
check(10, 1);
check(100, 4);
}

#[test]
#[should_panic]
fn test_nth_root_n_is_zero() {
check(4, 0, 0);
check(4, 0);
}

#[test]
fn test_nth_root_big() {
let x: BigUint = FromStr::from_str("123_456_789").unwrap();
let expected : BigUint = FromPrimitive::from_i32(6).unwrap();
let x = BigUint::from_str("123_456_789").unwrap();
let expected = BigUint::from(6u32);

assert_eq!(x.nth_root(10), expected);
}
}

mod bigint {
use num_bigint::BigInt;
use num_traits::FromPrimitive;

fn check(x: i32, n: u32, expected: i32) {
let big_x: BigInt = FromPrimitive::from_i32(x).unwrap();
let big_expected: BigInt = FromPrimitive::from_i32(expected).unwrap();

assert_eq!(big_x.nth_root(n), big_expected);
use num_traits::{Signed, pow};

fn check(x: i64, n: u32) {
let big_x = BigInt::from(x);
let res = big_x.nth_root(n);

if n == 2 {
assert_eq!(&res, &big_x.sqrt())
} else if n == 3 {
assert_eq!(&res, &big_x.cbrt())
}

if big_x.is_negative() {
assert!(pow(res.clone() - 1u32, n as usize) < big_x);
assert!(pow(res.clone(), n as usize) >= big_x);
} else {
assert!(pow(res.clone(), n as usize) <= big_x);
assert!(pow(res.clone() + 1u32, n as usize) > big_x);
}
}

#[test]
fn test_nth_root() {
check(-100, 3, -4);
check(100, 4);
}

#[test]
#[should_panic]
fn test_nth_root_x_neg_n_even() {
check(-100, 4, 0);
check(-100, 4);
}

#[test]
#[should_panic]
fn test_sqrt_x_neg() {
check(-4, 2, -2);
check(-4, 2);
}

#[test]
fn test_cbrt() {
check(-8, 3, -2);
check(8, 3);
check(-8, 3);
}
}

0 comments on commit 990a520

Please sign in to comment.