Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove rustdoc warnings #73548

Merged
merged 1 commit into from
Jul 1, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 99 additions & 98 deletions src/librustc_mir_build/hair/pattern/_match.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@
//! This file includes the logic for exhaustiveness and usefulness checking for
//! pattern-matching. Specifically, given a list of patterns for a type, we can
//! tell whether:
//! (a) the patterns cover every possible constructor for the type [exhaustiveness]
//! (b) each pattern is necessary [usefulness]
//! (a) the patterns cover every possible constructor for the type (exhaustiveness)
//! (b) each pattern is necessary (usefulness)
//!
//! The algorithm implemented here is a modified version of the one described in:
//! http://moscova.inria.fr/~maranget/papers/warn/index.html
Expand Down Expand Up @@ -101,53 +101,54 @@
//! To match the paper, the top of the stack is at the beginning / on the left.
//!
//! There are two important operations on pattern-stacks necessary to understand the algorithm:
//! 1. We can pop a given constructor off the top of a stack. This operation is called
//! `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
//! `None`) and `p` a pattern-stack.
//! If the pattern on top of the stack can cover `c`, this removes the constructor and
//! pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
//! Otherwise the pattern-stack is discarded.
//! This essentially filters those pattern-stacks whose top covers the constructor `c` and
//! discards the others.
//!
//! For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
//! pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
//! `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
//! nothing back.
//! 1. We can pop a given constructor off the top of a stack. This operation is called
//! `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
//! `None`) and `p` a pattern-stack.
//! If the pattern on top of the stack can cover `c`, this removes the constructor and
//! pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
//! Otherwise the pattern-stack is discarded.
//! This essentially filters those pattern-stacks whose top covers the constructor `c` and
//! discards the others.
//!
//! This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
//! on top of the stack, and we have four cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
//! push onto the stack the arguments of this constructor, and return the result:
//! r_1, .., r_a, p_2, .., p_n
//! 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
//! return nothing.
//! 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
//! arguments (its arity), and return the resulting stack:
//! _, .., _, p_2, .., p_n
//! 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack:
//! S(c, (r_1, p_2, .., p_n))
//! S(c, (r_2, p_2, .., p_n))
//! For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
//! pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
//! `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
//! nothing back.
//!
//! 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
//! a pattern-stack.
//! This is used when we know there are missing constructor cases, but there might be
//! existing wildcard patterns, so to check the usefulness of the matrix, we have to check
//! all its *other* components.
//! This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
//! on top of the stack, and we have four cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We
//! push onto the stack the arguments of this constructor, and return the result:
//! r_1, .., r_a, p_2, .., p_n
//! 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and
//! return nothing.
//! 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
//! arguments (its arity), and return the resulting stack:
//! _, .., _, p_2, .., p_n
//! 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack:
//! S(c, (r_1, p_2, .., p_n))
//! S(c, (r_2, p_2, .., p_n))
//!
//! It is computed as follows. We look at the pattern `p_1` on top of the stack,
//! and we have three cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
//! 1.2. `p_1 = _`. We return the rest of the stack:
//! p_2, .., p_n
//! 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack.
//! D((r_1, p_2, .., p_n))
//! D((r_2, p_2, .., p_n))
//! 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
//! a pattern-stack.
//! This is used when we know there are missing constructor cases, but there might be
//! existing wildcard patterns, so to check the usefulness of the matrix, we have to check
//! all its *other* components.
//!
//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
//! exhaustive integer matching rules, so they're written here for posterity.
//! It is computed as follows. We look at the pattern `p_1` on top of the stack,
//! and we have three cases:
//! 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
//! 1.2. `p_1 = _`. We return the rest of the stack:
//! p_2, .., p_n
//! 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting
//! stack.
//! D((r_1, p_2, .., p_n))
//! D((r_2, p_2, .., p_n))
//!
//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
//! exhaustive integer matching rules, so they're written here for posterity.
//!
//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
Expand All @@ -168,66 +169,66 @@
//!
//! Inductive step. (`n > 0`, i.e., whether there's at least one column
//! [which may then be expanded into further columns later])
//! We're going to match on the top of the new pattern-stack, `p_1`.
//! - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
//! we ignore all the patterns in the first column of `P` that involve other constructors.
//! This is where `S(c, P)` comes in:
//! `U(P, p) := U(S(c, P), S(c, p))`
//! This special case is handled in `is_useful_specialized`.
//! We're going to match on the top of the new pattern-stack, `p_1`.
//! - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
//! we ignore all the patterns in the first column of `P` that involve other constructors.
//! This is where `S(c, P)` comes in:
//! `U(P, p) := U(S(c, P), S(c, p))`
//! This special case is handled in `is_useful_specialized`.
//!
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, 0],
//! ]
//! and `p` is [Some(false), 0], then we don't care about row 2 since we know `p` only
//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
//! arguments of `Some` to know whether some new value is covered. So we compute
//! `U([[true, _]], [false, 0])`.
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, 0],
//! ]
//! and `p` is [Some(false), 0], then we don't care about row 2 since we know `p` only
//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
//! arguments of `Some` to know whether some new value is covered. So we compute
//! `U([[true, _]], [false, 0])`.
//!
//! - If `p_1 == _`, then we look at the list of constructors that appear in the first
//! component of the rows of `P`:
//! + If there are some constructors that aren't present, then we might think that the
//! wildcard `_` is useful, since it covers those constructors that weren't covered
//! before.
//! That's almost correct, but only works if there were no wildcards in those first
//! components. So we need to check that `p` is useful with respect to the rows that
//! start with a wildcard, if there are any. This is where `D` comes in:
//! `U(P, p) := U(D(P), D(p))`
//! - If `p_1 == _`, then we look at the list of constructors that appear in the first
//! component of the rows of `P`:
//! + If there are some constructors that aren't present, then we might think that the
//! wildcard `_` is useful, since it covers those constructors that weren't covered
//! before.
//! That's almost correct, but only works if there were no wildcards in those first
//! components. So we need to check that `p` is useful with respect to the rows that
//! start with a wildcard, if there are any. This is where `D` comes in:
//! `U(P, p) := U(D(P), D(p))`
//!
//! For example, if `P` is:
//! [
//! [_, true, _],
//! [None, false, 1],
//! ]
//! and `p` is [_, false, _], the `Some` constructor doesn't appear in `P`. So if we
//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
//! For example, if `P` is:
//! [
//! [_, true, _],
//! [None, false, 1],
//! ]
//! and `p` is [_, false, _], the `Some` constructor doesn't appear in `P`. So if we
//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
//!
//! + Otherwise, all possible constructors (for the relevant type) are present. In this
//! case we must check whether the wildcard pattern covers any unmatched value. For
//! that, we can think of the `_` pattern as a big OR-pattern that covers all
//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
//! example. The wildcard pattern is useful in this case if it is useful when
//! specialized to one of the possible constructors. So we compute:
//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
//! + Otherwise, all possible constructors (for the relevant type) are present. In this
//! case we must check whether the wildcard pattern covers any unmatched value. For
//! that, we can think of the `_` pattern as a big OR-pattern that covers all
//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
//! example. The wildcard pattern is useful in this case if it is useful when
//! specialized to one of the possible constructors. So we compute:
//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
//!
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, false],
//! ]
//! and `p` is [_, false], both `None` and `Some` constructors appear in the first
//! components of `P`. We will therefore try popping both constructors in turn: we
//! compute U([[true, _]], [_, false]) for the `Some` constructor, and U([[false]],
//! [false]) for the `None` constructor. The first case returns true, so we know that
//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
//! before.
//! For example, if `P` is:
//! [
//! [Some(true), _],
//! [None, false],
//! ]
//! and `p` is [_, false], both `None` and `Some` constructors appear in the first
//! components of `P`. We will therefore try popping both constructors in turn: we
//! compute `U([[true, _]], [_, false])` for the `Some` constructor, and `U([[false]],
//! [false])` for the `None` constructor. The first case returns true, so we know that
//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
//! before.
//!
//! - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
//! `U(P, p) := U(P, (r_1, p_2, .., p_n))
//! || U(P, (r_2, p_2, .., p_n))`
//! - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
//! `U(P, p) := U(P, (r_1, p_2, .., p_n))
//! || U(P, (r_2, p_2, .., p_n))`
//!
//! Modifications to the algorithm
//! ------------------------------
Expand Down