Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docs: impls of PartialEq/PartialOrd/Ord must agree #42260

Merged
merged 1 commit into from May 28, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion src/libcollections/binary_heap.rs
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,11 @@
//! // instead of a max-heap.
//! impl Ord for State {
//! fn cmp(&self, other: &State) -> Ordering {
//! // Notice that the we flip the ordering here
//! // Notice that the we flip the ordering on costs.
//! // In case of a tie we compare positions - this step is necessary
//! // to make implementations of `PartialEq` and `Ord` consistent.
//! other.cost.cmp(&self.cost)
//! .then_with(|| self.position.cmp(&other.position))
//! }
//! }
//!
Expand Down
16 changes: 14 additions & 2 deletions src/libcore/cmp.rs
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,10 @@ use self::Ordering::*;
/// the rule that `eq` is a strict inverse of `ne`; that is, `!(a == b)` if and
/// only if `a != b`.
///
/// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* agree with
/// each other. It's easy to accidentally make them disagree by deriving some
/// of the traits and manually implementing others.
///
/// An example implementation for a domain in which two books are considered
/// the same book if their ISBN matches, even if the formats differ:
///
Expand Down Expand Up @@ -343,6 +347,10 @@ impl Ordering {
/// Then you must define an implementation for `cmp()`. You may find it useful to use
/// `cmp()` on your type's fields.
///
/// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* agree with each other. It's
/// easy to accidentally make them disagree by deriving some of the traits and manually
/// implementing others.
///
/// Here's an example where you want to sort people by height only, disregarding `id`
/// and `name`:
///
Expand Down Expand Up @@ -431,15 +439,19 @@ impl PartialOrd for Ordering {
///
/// ## How can I implement `PartialOrd`?
///
/// PartialOrd only requires implementation of the `partial_cmp` method, with the others generated
/// from default implementations.
/// `PartialOrd` only requires implementation of the `partial_cmp` method, with the others
/// generated from default implementations.
///
/// However it remains possible to implement the others separately for types which do not have a
/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 ==
/// false` (cf. IEEE 754-2008 section 5.11).
///
/// `PartialOrd` requires your type to be `PartialEq`.
///
/// Implementations of `PartialEq`, `PartialOrd`, and `Ord` *must* agree with each other. It's
/// easy to accidentally make them disagree by deriving some of the traits and manually
/// implementing others.
///
/// If your type is `Ord`, you can implement `partial_cmp()` by using `cmp()`:
///
/// ```
Expand Down