Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add next_up and next_down for f32/f64 - take 2 #100578

Merged
merged 9 commits into from
Aug 29, 2022
100 changes: 100 additions & 0 deletions library/core/src/num/f32.rs
Original file line number Diff line number Diff line change
Expand Up @@ -678,6 +678,106 @@ impl f32 {
unsafe { mem::transmute::<f32, u32>(self) & 0x8000_0000 != 0 }
}

/// Returns the least number greater than `self`.
///
/// Let `TINY` be the smallest representable positive `f32`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
/// - if `self` is `-TINY`, this returns -0.0;
/// - if `self` is -0.0 or +0.0, this returns `TINY`;
/// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
/// - otherwise the unique least value greater than `self` is returned.
///
/// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_up().next_down()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// // f32::EPSILON is the difference between 1.0 and the next number up.
/// assert_eq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
/// // But not for most numbers.
/// assert!(0.1f32.next_up() < 0.1 + f32::EPSILON);
/// assert_eq!(16777216f32.next_up(), 16777218.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_up(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const TINY_BITS: u32 = 0x1; // Smallest positive f32.
const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;

let bits = self.to_bits();
if self.is_nan() || bits == Self::INFINITY.to_bits() {
return self;
}

let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
TINY_BITS
} else if bits == abs {
bits + 1
} else {
bits - 1
};
Self::from_bits(next_bits)
}

/// Returns the greatest number less than `self`.
///
/// Let `TINY` be the smallest representable positive `f32`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`INFINITY`], this returns [`MAX`];
/// - if `self` is `TINY`, this returns 0.0;
/// - if `self` is -0.0 or +0.0, this returns `-TINY`;
/// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
/// - otherwise the unique greatest value less than `self` is returned.
///
/// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_down().next_up()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// let x = 1.0f32;
/// // Clamp value into range [0, 1).
/// let clamped = x.clamp(0.0, 1.0f32.next_down());
/// assert!(clamped < 1.0);
/// assert_eq!(clamped.next_up(), 1.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_down(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const NEG_TINY_BITS: u32 = 0x8000_0001; // Smallest (in magnitude) negative f32.
const CLEAR_SIGN_MASK: u32 = 0x7fff_ffff;

let bits = self.to_bits();
if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
return self;
}

let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
NEG_TINY_BITS
} else if bits == abs {
bits - 1
} else {
bits + 1
};
Self::from_bits(next_bits)
}

/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
Expand Down
100 changes: 100 additions & 0 deletions library/core/src/num/f64.rs
Original file line number Diff line number Diff line change
Expand Up @@ -688,6 +688,106 @@ impl f64 {
self.is_sign_negative()
}

/// Returns the least number greater than `self`.
///
/// Let `TINY` be the smallest representable positive `f64`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
/// - if `self` is `-TINY`, this returns -0.0;
/// - if `self` is -0.0 or +0.0, this returns `TINY`;
/// - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
/// - otherwise the unique least value greater than `self` is returned.
///
/// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_up().next_down()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// // f64::EPSILON is the difference between 1.0 and the next number up.
/// assert_eq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
/// // But not for most numbers.
/// assert!(0.1f64.next_up() < 0.1 + f64::EPSILON);
/// assert_eq!(9007199254740992f64.next_up(), 9007199254740994.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_up(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const TINY_BITS: u64 = 0x1; // Smallest positive f64.
const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;

let bits = self.to_bits();
if self.is_nan() || bits == Self::INFINITY.to_bits() {
return self;
}

let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
TINY_BITS
} else if bits == abs {
bits + 1
} else {
bits - 1
};
Self::from_bits(next_bits)
}

/// Returns the greatest number less than `self`.
///
/// Let `TINY` be the smallest representable positive `f64`. Then,
/// - if `self.is_nan()`, this returns `self`;
/// - if `self` is [`INFINITY`], this returns [`MAX`];
/// - if `self` is `TINY`, this returns 0.0;
/// - if `self` is -0.0 or +0.0, this returns `-TINY`;
/// - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
/// - otherwise the unique greatest value less than `self` is returned.
///
/// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
/// is finite `x == x.next_down().next_up()` also holds.
///
/// ```rust
/// #![feature(float_next_up_down)]
/// let x = 1.0f64;
/// // Clamp value into range [0, 1).
/// let clamped = x.clamp(0.0, 1.0f64.next_down());
/// assert!(clamped < 1.0);
/// assert_eq!(clamped.next_up(), 1.0);
/// ```
///
/// [`NEG_INFINITY`]: Self::NEG_INFINITY
/// [`INFINITY`]: Self::INFINITY
/// [`MIN`]: Self::MIN
/// [`MAX`]: Self::MAX
#[unstable(feature = "float_next_up_down", issue = "91399")]
#[rustc_const_unstable(feature = "float_next_up_down", issue = "91399")]
pub const fn next_down(self) -> Self {
// We must use strictly integer arithmetic to prevent denormals from
// flushing to zero after an arithmetic operation on some platforms.
const NEG_TINY_BITS: u64 = 0x8000_0000_0000_0001; // Smallest (in magnitude) negative f64.
const CLEAR_SIGN_MASK: u64 = 0x7fff_ffff_ffff_ffff;

let bits = self.to_bits();
if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
return self;
}

let abs = bits & CLEAR_SIGN_MASK;
let next_bits = if abs == 0 {
NEG_TINY_BITS
} else if bits == abs {
bits - 1
} else {
bits + 1
};
Self::from_bits(next_bits)
}

/// Takes the reciprocal (inverse) of a number, `1/x`.
///
/// ```
Expand Down
78 changes: 78 additions & 0 deletions library/std/src/f32/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,84 @@ fn test_is_sign_negative() {
assert!((-f32::NAN).is_sign_negative());
}

#[allow(unused_macros)]
macro_rules! assert_f32_biteq {
($left : expr, $right : expr) => {
let l: &f32 = &$left;
let r: &f32 = &$right;
let lb = l.to_bits();
let rb = r.to_bits();
assert_eq!(lb, rb, "float {} ({:#x}) is not equal to {} ({:#x})", *l, lb, *r, rb);
};
}

// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_up() {
let tiny = f32::from_bits(1);
let tiny_up = f32::from_bits(2);
let max_down = f32::from_bits(0x7f7f_fffe);
let largest_subnormal = f32::from_bits(0x007f_ffff);
let smallest_normal = f32::from_bits(0x0080_0000);
assert_f32_biteq!(f32::NEG_INFINITY.next_up(), f32::MIN);
assert_f32_biteq!(f32::MIN.next_up(), -max_down);
assert_f32_biteq!((-1.0 - f32::EPSILON).next_up(), -1.0);
assert_f32_biteq!((-smallest_normal).next_up(), -largest_subnormal);
assert_f32_biteq!((-tiny_up).next_up(), -tiny);
assert_f32_biteq!((-tiny).next_up(), -0.0f32);
assert_f32_biteq!((-0.0f32).next_up(), tiny);
assert_f32_biteq!(0.0f32.next_up(), tiny);
assert_f32_biteq!(tiny.next_up(), tiny_up);
assert_f32_biteq!(largest_subnormal.next_up(), smallest_normal);
assert_f32_biteq!(1.0f32.next_up(), 1.0 + f32::EPSILON);
assert_f32_biteq!(f32::MAX.next_up(), f32::INFINITY);
assert_f32_biteq!(f32::INFINITY.next_up(), f32::INFINITY);

// Check that NaNs roundtrip.
let nan0 = f32::NAN;
let nan1 = f32::from_bits(f32::NAN.to_bits() ^ 0x002a_aaaa);
let nan2 = f32::from_bits(f32::NAN.to_bits() ^ 0x0055_5555);
assert_f32_biteq!(nan0.next_up(), nan0);
assert_f32_biteq!(nan1.next_up(), nan1);
assert_f32_biteq!(nan2.next_up(), nan2);
}

// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_down() {
let tiny = f32::from_bits(1);
let tiny_up = f32::from_bits(2);
let max_down = f32::from_bits(0x7f7f_fffe);
let largest_subnormal = f32::from_bits(0x007f_ffff);
let smallest_normal = f32::from_bits(0x0080_0000);
assert_f32_biteq!(f32::NEG_INFINITY.next_down(), f32::NEG_INFINITY);
assert_f32_biteq!(f32::MIN.next_down(), f32::NEG_INFINITY);
assert_f32_biteq!((-max_down).next_down(), f32::MIN);
assert_f32_biteq!((-1.0f32).next_down(), -1.0 - f32::EPSILON);
assert_f32_biteq!((-largest_subnormal).next_down(), -smallest_normal);
assert_f32_biteq!((-tiny).next_down(), -tiny_up);
assert_f32_biteq!((-0.0f32).next_down(), -tiny);
assert_f32_biteq!((0.0f32).next_down(), -tiny);
assert_f32_biteq!(tiny.next_down(), 0.0f32);
assert_f32_biteq!(tiny_up.next_down(), tiny);
assert_f32_biteq!(smallest_normal.next_down(), largest_subnormal);
assert_f32_biteq!((1.0 + f32::EPSILON).next_down(), 1.0f32);
assert_f32_biteq!(f32::MAX.next_down(), max_down);
assert_f32_biteq!(f32::INFINITY.next_down(), f32::MAX);

// Check that NaNs roundtrip.
let nan0 = f32::NAN;
let nan1 = f32::from_bits(f32::NAN.to_bits() ^ 0x002a_aaaa);
let nan2 = f32::from_bits(f32::NAN.to_bits() ^ 0x0055_5555);
assert_f32_biteq!(nan0.next_down(), nan0);
assert_f32_biteq!(nan1.next_down(), nan1);
assert_f32_biteq!(nan2.next_down(), nan2);
}

#[test]
fn test_mul_add() {
let nan: f32 = f32::NAN;
Expand Down
76 changes: 76 additions & 0 deletions library/std/src/f64/tests.rs
Original file line number Diff line number Diff line change
Expand Up @@ -289,6 +289,82 @@ fn test_is_sign_negative() {
assert!((-f64::NAN).is_sign_negative());
}

#[allow(unused_macros)]
macro_rules! assert_f64_biteq {
($left : expr, $right : expr) => {
let l: &f64 = &$left;
let r: &f64 = &$right;
let lb = l.to_bits();
let rb = r.to_bits();
assert_eq!(lb, rb, "float {} ({:#x}) is not equal to {} ({:#x})", *l, lb, *r, rb);
};
}

// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_up() {
let tiny = f64::from_bits(1);
let tiny_up = f64::from_bits(2);
let max_down = f64::from_bits(0x7fef_ffff_ffff_fffe);
let largest_subnormal = f64::from_bits(0x000f_ffff_ffff_ffff);
let smallest_normal = f64::from_bits(0x0010_0000_0000_0000);
assert_f64_biteq!(f64::NEG_INFINITY.next_up(), f64::MIN);
assert_f64_biteq!(f64::MIN.next_up(), -max_down);
assert_f64_biteq!((-1.0 - f64::EPSILON).next_up(), -1.0);
assert_f64_biteq!((-smallest_normal).next_up(), -largest_subnormal);
assert_f64_biteq!((-tiny_up).next_up(), -tiny);
assert_f64_biteq!((-tiny).next_up(), -0.0f64);
assert_f64_biteq!((-0.0f64).next_up(), tiny);
assert_f64_biteq!(0.0f64.next_up(), tiny);
assert_f64_biteq!(tiny.next_up(), tiny_up);
assert_f64_biteq!(largest_subnormal.next_up(), smallest_normal);
assert_f64_biteq!(1.0f64.next_up(), 1.0 + f64::EPSILON);
assert_f64_biteq!(f64::MAX.next_up(), f64::INFINITY);
assert_f64_biteq!(f64::INFINITY.next_up(), f64::INFINITY);

let nan0 = f64::NAN;
let nan1 = f64::from_bits(f64::NAN.to_bits() ^ 0x000a_aaaa_aaaa_aaaa);
let nan2 = f64::from_bits(f64::NAN.to_bits() ^ 0x0005_5555_5555_5555);
assert_f64_biteq!(nan0.next_up(), nan0);
assert_f64_biteq!(nan1.next_up(), nan1);
assert_f64_biteq!(nan2.next_up(), nan2);
}

// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_down() {
let tiny = f64::from_bits(1);
let tiny_up = f64::from_bits(2);
let max_down = f64::from_bits(0x7fef_ffff_ffff_fffe);
let largest_subnormal = f64::from_bits(0x000f_ffff_ffff_ffff);
let smallest_normal = f64::from_bits(0x0010_0000_0000_0000);
assert_f64_biteq!(f64::NEG_INFINITY.next_down(), f64::NEG_INFINITY);
assert_f64_biteq!(f64::MIN.next_down(), f64::NEG_INFINITY);
assert_f64_biteq!((-max_down).next_down(), f64::MIN);
assert_f64_biteq!((-1.0f64).next_down(), -1.0 - f64::EPSILON);
assert_f64_biteq!((-largest_subnormal).next_down(), -smallest_normal);
assert_f64_biteq!((-tiny).next_down(), -tiny_up);
assert_f64_biteq!((-0.0f64).next_down(), -tiny);
assert_f64_biteq!((0.0f64).next_down(), -tiny);
assert_f64_biteq!(tiny.next_down(), 0.0f64);
assert_f64_biteq!(tiny_up.next_down(), tiny);
assert_f64_biteq!(smallest_normal.next_down(), largest_subnormal);
assert_f64_biteq!((1.0 + f64::EPSILON).next_down(), 1.0f64);
assert_f64_biteq!(f64::MAX.next_down(), max_down);
assert_f64_biteq!(f64::INFINITY.next_down(), f64::MAX);

let nan0 = f64::NAN;
let nan1 = f64::from_bits(f64::NAN.to_bits() ^ 0x000a_aaaa_aaaa_aaaa);
let nan2 = f64::from_bits(f64::NAN.to_bits() ^ 0x0005_5555_5555_5555);
assert_f64_biteq!(nan0.next_down(), nan0);
assert_f64_biteq!(nan1.next_down(), nan1);
assert_f64_biteq!(nan2.next_down(), nan2);
}

#[test]
fn test_mul_add() {
let nan: f64 = f64::NAN;
Expand Down
1 change: 1 addition & 0 deletions library/std/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -273,6 +273,7 @@
#![feature(exclusive_wrapper)]
#![feature(extend_one)]
#![feature(float_minimum_maximum)]
#![feature(float_next_up_down)]
#![feature(hasher_prefixfree_extras)]
#![feature(hashmap_internals)]
#![feature(int_error_internals)]
Expand Down