forked from apache/airflow
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
google: move openlineage imports inside methods (apache#40062)
Co-authored-by: Cloud Composer Team <no-reply@google.com>
- Loading branch information
1 parent
c61f664
commit d8288de
Showing
5 changed files
with
529 additions
and
426 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
# | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
from __future__ import annotations | ||
|
||
import copy | ||
import json | ||
import traceback | ||
from typing import TYPE_CHECKING | ||
|
||
if TYPE_CHECKING: | ||
from openlineage.client.facet import ( | ||
BaseFacet, | ||
OutputStatisticsOutputDatasetFacet, | ||
SchemaDatasetFacet, | ||
) | ||
from openlineage.client.run import Dataset | ||
|
||
from airflow.providers.google.cloud.openlineage.utils import BigQueryJobRunFacet | ||
|
||
|
||
class _BigQueryOpenLineageMixin: | ||
def get_openlineage_facets_on_complete(self, _): | ||
""" | ||
Retrieve OpenLineage data for a COMPLETE BigQuery job. | ||
This method retrieves statistics for the specified job_ids using the BigQueryDatasetsProvider. | ||
It calls BigQuery API, retrieving input and output dataset info from it, as well as run-level | ||
usage statistics. | ||
Run facets should contain: | ||
- ExternalQueryRunFacet | ||
- BigQueryJobRunFacet | ||
Run facets may contain: | ||
- ErrorMessageRunFacet | ||
Job facets should contain: | ||
- SqlJobFacet if operator has self.sql | ||
Input datasets should contain facets: | ||
- DataSourceDatasetFacet | ||
- SchemaDatasetFacet | ||
Output datasets should contain facets: | ||
- DataSourceDatasetFacet | ||
- SchemaDatasetFacet | ||
- OutputStatisticsOutputDatasetFacet | ||
""" | ||
from openlineage.client.facet import ExternalQueryRunFacet, SqlJobFacet | ||
|
||
from airflow.providers.openlineage.extractors import OperatorLineage | ||
from airflow.providers.openlineage.sqlparser import SQLParser | ||
|
||
if not self.job_id: | ||
return OperatorLineage() | ||
|
||
run_facets: dict[str, BaseFacet] = { | ||
"externalQuery": ExternalQueryRunFacet(externalQueryId=self.job_id, source="bigquery") | ||
} | ||
|
||
job_facets = {"sql": SqlJobFacet(query=SQLParser.normalize_sql(self.sql))} | ||
|
||
self.client = self.hook.get_client(project_id=self.hook.project_id) | ||
job_ids = self.job_id | ||
if isinstance(self.job_id, str): | ||
job_ids = [self.job_id] | ||
inputs, outputs = [], [] | ||
for job_id in job_ids: | ||
inner_inputs, inner_outputs, inner_run_facets = self.get_facets(job_id=job_id) | ||
inputs.extend(inner_inputs) | ||
outputs.extend(inner_outputs) | ||
run_facets.update(inner_run_facets) | ||
|
||
return OperatorLineage( | ||
inputs=inputs, | ||
outputs=outputs, | ||
run_facets=run_facets, | ||
job_facets=job_facets, | ||
) | ||
|
||
def get_facets(self, job_id: str): | ||
from openlineage.client.facet import ErrorMessageRunFacet | ||
|
||
from airflow.providers.google.cloud.openlineage.utils import ( | ||
BigQueryErrorRunFacet, | ||
get_from_nullable_chain, | ||
) | ||
|
||
inputs = [] | ||
outputs = [] | ||
run_facets: dict[str, BaseFacet] = {} | ||
if hasattr(self, "log"): | ||
self.log.debug("Extracting data from bigquery job: `%s`", job_id) | ||
try: | ||
job = self.client.get_job(job_id=job_id) # type: ignore | ||
props = job._properties | ||
|
||
if get_from_nullable_chain(props, ["status", "state"]) != "DONE": | ||
raise ValueError(f"Trying to extract data from running bigquery job: `{job_id}`") | ||
|
||
# TODO: remove bigQuery_job in next release | ||
run_facets["bigQuery_job"] = run_facets["bigQueryJob"] = self._get_bigquery_job_run_facet(props) | ||
|
||
if get_from_nullable_chain(props, ["statistics", "numChildJobs"]): | ||
if hasattr(self, "log"): | ||
self.log.debug("Found SCRIPT job. Extracting lineage from child jobs instead.") | ||
# SCRIPT job type has no input / output information but spawns child jobs that have one | ||
# https://cloud.google.com/bigquery/docs/information-schema-jobs#multi-statement_query_job | ||
for child_job_id in self.client.list_jobs(parent_job=job_id): | ||
child_job = self.client.get_job(job_id=child_job_id) # type: ignore | ||
child_inputs, child_output = self._get_inputs_outputs_from_job(child_job._properties) | ||
inputs.extend(child_inputs) | ||
outputs.append(child_output) | ||
else: | ||
inputs, _output = self._get_inputs_outputs_from_job(props) | ||
outputs.append(_output) | ||
except Exception as e: | ||
if hasattr(self, "log"): | ||
self.log.warning("Cannot retrieve job details from BigQuery.Client. %s", e, exc_info=True) | ||
exception_msg = traceback.format_exc() | ||
# TODO: remove BigQueryErrorRunFacet in next release | ||
run_facets.update( | ||
{ | ||
"errorMessage": ErrorMessageRunFacet( | ||
message=f"{e}: {exception_msg}", | ||
programmingLanguage="python", | ||
), | ||
"bigQuery_error": BigQueryErrorRunFacet( | ||
clientError=f"{e}: {exception_msg}", | ||
), | ||
} | ||
) | ||
deduplicated_outputs = self._deduplicate_outputs(outputs) | ||
return inputs, deduplicated_outputs, run_facets | ||
|
||
def _deduplicate_outputs(self, outputs: list[Dataset | None]) -> list[Dataset]: | ||
# Sources are the same so we can compare only names | ||
final_outputs = {} | ||
for single_output in outputs: | ||
if not single_output: | ||
continue | ||
key = single_output.name | ||
if key not in final_outputs: | ||
final_outputs[key] = single_output | ||
continue | ||
|
||
# No OutputStatisticsOutputDatasetFacet is added to duplicated outputs as we can not determine | ||
# if the rowCount or size can be summed together. | ||
single_output.facets.pop("outputStatistics", None) | ||
final_outputs[key] = single_output | ||
|
||
return list(final_outputs.values()) | ||
|
||
def _get_inputs_outputs_from_job(self, properties: dict) -> tuple[list[Dataset], Dataset | None]: | ||
from airflow.providers.google.cloud.openlineage.utils import get_from_nullable_chain | ||
|
||
input_tables = get_from_nullable_chain(properties, ["statistics", "query", "referencedTables"]) or [] | ||
output_table = get_from_nullable_chain(properties, ["configuration", "query", "destinationTable"]) | ||
inputs = [self._get_dataset(input_table) for input_table in input_tables] | ||
if output_table: | ||
output = self._get_dataset(output_table) | ||
dataset_stat_facet = self._get_statistics_dataset_facet(properties) | ||
if dataset_stat_facet: | ||
output.facets.update({"outputStatistics": dataset_stat_facet}) | ||
|
||
return inputs, output | ||
|
||
@staticmethod | ||
def _get_bigquery_job_run_facet(properties: dict) -> BigQueryJobRunFacet: | ||
from airflow.providers.google.cloud.openlineage.utils import ( | ||
BigQueryJobRunFacet, | ||
get_from_nullable_chain, | ||
) | ||
|
||
if get_from_nullable_chain(properties, ["configuration", "query", "query"]): | ||
# Exclude the query to avoid event size issues and duplicating SqlJobFacet information. | ||
properties = copy.deepcopy(properties) | ||
properties["configuration"]["query"].pop("query") | ||
cache_hit = get_from_nullable_chain(properties, ["statistics", "query", "cacheHit"]) | ||
billed_bytes = get_from_nullable_chain(properties, ["statistics", "query", "totalBytesBilled"]) | ||
return BigQueryJobRunFacet( | ||
cached=str(cache_hit).lower() == "true", | ||
billedBytes=int(billed_bytes) if billed_bytes else None, | ||
properties=json.dumps(properties), | ||
) | ||
|
||
@staticmethod | ||
def _get_statistics_dataset_facet(properties) -> OutputStatisticsOutputDatasetFacet | None: | ||
from openlineage.client.facet import OutputStatisticsOutputDatasetFacet | ||
|
||
from airflow.providers.google.cloud.openlineage.utils import get_from_nullable_chain | ||
|
||
query_plan = get_from_nullable_chain(properties, chain=["statistics", "query", "queryPlan"]) | ||
if not query_plan: | ||
return None | ||
|
||
out_stage = query_plan[-1] | ||
out_rows = out_stage.get("recordsWritten", None) | ||
out_bytes = out_stage.get("shuffleOutputBytes", None) | ||
if out_bytes and out_rows: | ||
return OutputStatisticsOutputDatasetFacet(rowCount=int(out_rows), size=int(out_bytes)) | ||
return None | ||
|
||
def _get_dataset(self, table: dict) -> Dataset: | ||
from openlineage.client.run import Dataset | ||
|
||
BIGQUERY_NAMESPACE = "bigquery" | ||
|
||
project = table.get("projectId") | ||
dataset = table.get("datasetId") | ||
table_name = table.get("tableId") | ||
dataset_name = f"{project}.{dataset}.{table_name}" | ||
|
||
dataset_schema = self._get_table_schema_safely(dataset_name) | ||
return Dataset( | ||
namespace=BIGQUERY_NAMESPACE, | ||
name=dataset_name, | ||
facets={ | ||
"schema": dataset_schema, | ||
} | ||
if dataset_schema | ||
else {}, | ||
) | ||
|
||
def _get_table_schema_safely(self, table_name: str) -> SchemaDatasetFacet | None: | ||
try: | ||
return self._get_table_schema(table_name) | ||
except Exception as e: | ||
if hasattr(self, "log"): | ||
self.log.warning("Could not extract output schema from bigquery. %s", e) | ||
return None | ||
|
||
def _get_table_schema(self, table: str) -> SchemaDatasetFacet | None: | ||
from openlineage.client.facet import SchemaDatasetFacet, SchemaField | ||
|
||
from airflow.providers.google.cloud.openlineage.utils import get_from_nullable_chain | ||
|
||
bq_table = self.client.get_table(table) | ||
|
||
if not bq_table._properties: | ||
return None | ||
|
||
fields = get_from_nullable_chain(bq_table._properties, ["schema", "fields"]) | ||
if not fields: | ||
return None | ||
|
||
return SchemaDatasetFacet( | ||
fields=[ | ||
SchemaField( | ||
name=field.get("name"), | ||
type=field.get("type"), | ||
description=field.get("description"), | ||
) | ||
for field in fields | ||
] | ||
) |
Oops, something went wrong.