forked from the-crypt-keeper/tldw
-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
698 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
#!/usr/bin/env python3 | ||
import string | ||
import json | ||
from transformers import AutoTokenizer | ||
tokenizer = AutoTokenizer.from_pretrained('hf-internal-testing/llama-tokenizer', use_fast = True) | ||
|
||
def segment_merger(filename, max_text_len = 1000): | ||
segments = json.load(open(filename)) | ||
|
||
text = '' | ||
last_segment = { 'speaker': None } | ||
start_time = None | ||
stop_chars = string.punctuation.replace(',','') | ||
|
||
for segment in segments: | ||
early_break = (max_text_len > 0) and (len(text) > max_text_len) and (text[-1] in stop_chars) | ||
if last_segment['speaker'] != segment['speaker'] or early_break: | ||
if text != '': | ||
yield { 'speaker': last_segment['speaker'], 'text': text, 'start': start_time, 'end': last_segment['end'] } | ||
text = segment['text'].lstrip() | ||
start_time = segment['start'] | ||
else: | ||
text += segment['text'] | ||
last_segment = segment | ||
|
||
if text != '': | ||
yield { 'speaker': last_segment['speaker'], 'text': text, 'start': start_time, 'end': last_segment['end'] } | ||
|
||
def time_splitter(merged_segments, chunk_size = 300): | ||
start_time = None | ||
text = '' | ||
speakers = [] | ||
|
||
for segment in merged_segments: | ||
if start_time is None: | ||
start_time = segment['start'] | ||
if not segment['speaker'] in speakers: speakers.append(segment['speaker']) | ||
text += f"{segment['speaker']}: {segment['text']}\n" | ||
if segment['end'] - start_time >= chunk_size: | ||
yield { 'text': text, 'start': start_time, 'end': segment['end'], 'speakers': speakers } | ||
start_time = None | ||
text = '' | ||
speakers = [] | ||
|
||
def main(prefix: str, chunk_size: int = 300, max_text_len: int = 800): | ||
merged_segments = list(segment_merger(prefix+'.diarize.json', max_text_len)) | ||
split_segments = list(time_splitter(merged_segments, chunk_size)) | ||
max_tokens = 0 | ||
with open(prefix+'.chunk.json', 'w') as f: | ||
json.dump(split_segments, f) | ||
for idx, segment in enumerate(split_segments): | ||
logits = tokenizer.encode(segment['text']) | ||
if len(logits) > max_tokens: max_tokens = len(logits) | ||
print(f"Segment {idx}: {len(logits)} tokens, {len(segment['text'])} characters, {int(segment['end']-segment['start'])} seconds") | ||
|
||
print(f"Largest chunk was {max_tokens} tokens") | ||
print(f"Wrote {len(split_segments)} chunks to {prefix}.chunk.json") | ||
|
||
if __name__ == "__main__": | ||
import fire | ||
fire.Fire(main) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import json | ||
import streamlit as st | ||
import glob | ||
|
||
def load_analysis_file(file_path): | ||
with open(file_path, 'r') as file: | ||
data = json.load(file) | ||
return data | ||
|
||
def display_analysis_data(data): | ||
tests = data['tests'] | ||
models_list = data['models'] | ||
models = {} | ||
for idx, model_info in enumerate(models_list): | ||
models[model_info['id']] = model_info | ||
|
||
# summary table | ||
summary_cols = st.columns(len(models_list)) | ||
for model_id, model_info in models.items(): | ||
with summary_cols[model_info['idx']]: | ||
st.subheader(f"{model_info['short_name']}") | ||
|
||
for test_name, test_data in tests.items(): | ||
st.markdown(f"#### {test_name}") | ||
|
||
columns = st.columns(len(models)) | ||
if 'summary' in test_data: | ||
st.markdown("**Analysis**: "+test_data['summary']) | ||
|
||
for model_id, model_result in test_data['results'].items(): | ||
model_info = models[model_id] | ||
|
||
model_result['passing_tests'] = '\n\n'.join([f":blue[{x}]" for x in model_result['passing_tests'].split('\n') if x.strip() != '']) | ||
model_result['failing_tests'] = '\n\n'.join([f":red[{x}]" for x in model_result['failing_tests'].split('\n') if x.strip() != '']) | ||
|
||
with columns[model_info['idx']]: | ||
#st.subheader(f"{model_info['short_name']}") | ||
st.write(model_result['answer']) | ||
|
||
st.set_page_config(page_title='Analysis Explorer', layout="wide") | ||
st.markdown(""" | ||
<style> | ||
.block-container { | ||
padding-top: 2rem; | ||
padding-bottom: 0rem; | ||
padding-left: 3rem; | ||
padding-right: 3.5rem; | ||
} | ||
</style> | ||
""", unsafe_allow_html=True) | ||
|
||
files = sorted(glob.glob('compare/*.json')) | ||
data = [json.load(open(file,'r')) for file in files] | ||
titles = [x['config']['title'] for x in data] | ||
options = st.selectbox('Select Summary', titles) | ||
idx = titles.index(options) | ||
display_analysis_data(data[idx]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
#!/usr/bin/env python3 | ||
import json | ||
import os | ||
from jinja2 import Template | ||
import fire | ||
import yaml | ||
from copy import copy | ||
|
||
def prepare(TEST_LANGUAGE, path, files): | ||
out = {} | ||
models = [] | ||
|
||
for idx, info in enumerate(files): | ||
file = os.path.join(path, info['eval']) | ||
id = info['id'] | ||
|
||
tags = os.path.basename(file).replace('.ndjson', '').split('_') | ||
prompt = tags[3] | ||
params = tags[5] | ||
model = tags[6] | ||
|
||
models.append({'prompt': prompt, 'short_name': info['short_name'], 'params': params, 'model': model, 'id': id, 'idx': idx, 'passed': 0, 'total': 0}) | ||
results = [json.loads(line) for line in open(file)] | ||
|
||
for r in results: | ||
if r['language'] != TEST_LANGUAGE: | ||
continue | ||
|
||
testid = r['name']+'-'+r['language'] | ||
if testid not in out: | ||
out[testid] = { 'results': {}, 'task': '', 'language': r['language'] } | ||
|
||
check_summary = '' | ||
passing_tests = '' | ||
failing_tests = '' | ||
|
||
out[testid]['results'][id] = { | ||
'check_summary': check_summary, | ||
'passing_tests': passing_tests, | ||
'failing_tests': failing_tests, | ||
#'code': r['code'], | ||
'answer': r['answer'] | ||
} | ||
|
||
#models[idx]['passed'] += r['passed'] | ||
#models[idx]['total'] += r['total'] | ||
|
||
return { 'tests': out, 'models': models } | ||
|
||
def main(config: str, path: str = "./", analyser: str = "", language: str = "english"): | ||
cfg = yaml.safe_load(open(config)) | ||
|
||
for lang in language.split(','): | ||
cfg['language'] = lang | ||
print('Comparing results for', lang) | ||
data = prepare(cfg['language'], path, cfg['models']) | ||
data['config'] = copy(cfg) | ||
data['config']['title'] += f" ({lang})" | ||
data['analyser'] = analyser | ||
|
||
if analyser != "": | ||
analysis(data, analyser) | ||
|
||
outfile = config.replace('.yaml', f'-{lang}.json') | ||
with open(outfile, 'w') as f: | ||
json.dump(data, f, indent=4) | ||
|
||
if __name__ == "__main__": | ||
fire.Fire(main) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
import json | ||
import sys | ||
|
||
in_file = sys.argv[1] | ||
with open(in_file) as infile: | ||
chunks = [json.loads(line) for line in infile.readlines()] | ||
|
||
def part_to_time(part): | ||
mins = part*5 | ||
oh = mins // 60 | ||
om = mins % 60 | ||
return f'{oh:02}:{om:02}' | ||
|
||
text = '' | ||
for idx, chunk in enumerate(chunks): | ||
#text += f'\n\n[{part_to_time(idx)} - {part_to_time(idx+1)}] ' | ||
text += f'\nSection {idx+1}: {chunk["answer"]}\n' | ||
|
||
out_file = in_file.replace('ndjson','txt') | ||
with open(out_file,'w') as outfile: | ||
outfile.write(text) | ||
|
||
from transformers import AutoTokenizer | ||
tokenizer = AutoTokenizer.from_pretrained('hf-internal-testing/llama-tokenizer', use_fast = True) | ||
logits = tokenizer.encode(text) | ||
|
||
print('chunks:', len(chunks)) | ||
print('summary bytes:', len(text)) | ||
print('summary tokens:', len(logits)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
from pyannote.audio import Pipeline | ||
import torch | ||
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization").to(torch.device("cuda")) | ||
|
||
# 4. apply pretrained pipeline | ||
diarization = pipeline("lex.wav", num_speakers=2) | ||
|
||
# 5. print the result | ||
for turn, _, speaker in diarization.itertracks(yield_label=True): | ||
print(f"start={turn.start:.1f}s stop={turn.end:.1f}s speaker_{speaker}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
#!/usr/bin/env python3 | ||
from jinja2 import Template | ||
import json | ||
|
||
prompt_template = """ | ||
Continue the rolling transcription summary of "{{title}}". Consider the current context when summarizing the given transcription part. | ||
### Context: {{ context }} | ||
Speaker-Map: {{ speakermap }} | ||
### Transcription part {{ idx }} of {{ len }}, start time {{ start }}: | ||
{{ chunk }} | ||
### Instruction: Using the Context above, analyze the Trasncription and respond with a JSON object in this form: | ||
{ | ||
"Speaker-Map": { "SPEAKER 1": "Bob Dole", "SPEAKER 2": "Jane Doe" } // A map of speakers to their names, make sure to remember all previous speakers. | ||
"Next-Context": "..." // An updated context for the next part of the transcription. Always include the speakers and the current topics of discussion. | ||
"Summary": "..." // A detailed, point-by-point summary of the current transcription. | ||
} | ||
""" | ||
|
||
from openai import OpenAI | ||
|
||
client = OpenAI() | ||
|
||
def main(prefix: str, init_speakers: str = ""): | ||
the_template = Template(prompt_template) | ||
|
||
split_segments = json.load(open(prefix+'.chunk.json')) | ||
info = json.load(open(prefix+'.info.json')) | ||
|
||
context = f""" | ||
Video Title: {info['title']} | ||
Video Description: {info['description'][:1024]} | ||
""" | ||
|
||
speakers = "{ UNKNOWN }" | ||
|
||
f = open(prefix+'.summary.json', 'w') | ||
idx = 0 | ||
for chunk in split_segments: | ||
dur = chunk['end'] - chunk['start'] | ||
print(f"{idx}: {dur}s {len(chunk)}") | ||
|
||
prompt = the_template.render(chunk=chunk['text'], start=chunk['start'], end=chunk['end'], | ||
idx=idx, len=len(split_segments), context=context, speakermap=speakers, title=info['title']) | ||
|
||
messages = [{'role': 'user', 'content': prompt }] | ||
response = client.chat.completions.create(messages=messages,model='gpt-3.5-turbo-1106',temperature=0.1,max_tokens=1024, response_format={ "type": "json_object" }) | ||
|
||
answer = response.choices[0].message.content | ||
|
||
parsed = json.loads(answer) | ||
|
||
summary = parsed.get('Summary','') | ||
new_speakers = parsed.get('Speaker-Map','') | ||
new_context = parsed.get('Next-Context','') | ||
|
||
if summary == '' or new_context == '' or new_speakers == '': | ||
print('extraction failed:', new_context, new_speakers, summary) | ||
exit(1) | ||
else: | ||
section = { | ||
'start': chunk['start'], | ||
'end': chunk['end'], | ||
'summary': summary, | ||
'speakers': new_speakers, | ||
'context': new_context | ||
} | ||
print('## ', new_speakers) | ||
print('>> ', new_context) | ||
print(summary) | ||
print() | ||
|
||
f.write(json.dumps(section)+'\n') | ||
f.flush() | ||
|
||
context = new_context | ||
speakers = new_speakers | ||
|
||
idx = idx + 1 | ||
|
||
if __name__ == "__main__": | ||
import fire | ||
fire.Fire(main) |
Oops, something went wrong.