Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AIR] Tracking issues in AIR examples tested on Windows #27851

Closed
59 of 69 tasks
peytondmurray opened this issue Aug 13, 2022 · 6 comments · Fixed by #28800
Closed
59 of 69 tasks

[AIR] Tracking issues in AIR examples tested on Windows #27851

peytondmurray opened this issue Aug 13, 2022 · 6 comments · Fixed by #28800
Assignees
Labels
bug Something that is supposed to be working; but isn't P1 Issue that should be fixed within a few weeks

Comments

@peytondmurray
Copy link
Contributor

peytondmurray commented Aug 13, 2022

What happened + What you expected to happen

I've spent some time testing the AIR examples on Windows. This issue is intended to track issues encountered while running through the examples manually. Each example has it's own collapsible section - let me know if a better format for these notes would be preferred.

1. torch_image_example

  • Typo in docs confuses the syntax highlighting:
scaling_config=ScalingConfig(num_workers=8, "use_gpu=True)

2. convert_existing_pytorch_code_to_ray_air

No additional notes, example worked as intended.

3. tfx_tabular_train_to_serve

During the fit several warnings were generated before the fit failed.

Deprecation warnings:

  • placement_group_parameter
  • object_store_memory
  • placement_group
  • placement_group_bundle_index
  • placement_group_capture_child_tasks
/home/pdmurray/Desktop/workspace/ray/python/ray/util/placement_group.py:78: DeprecationWarning: placement_group parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return bundle_reservation_check.options(
/home/pdmurray/Desktop/workspace/ray/python/ray/_private/ray_option_utils.py:266: DeprecationWarning: Setting 'object_store_memory' for actors is deprecated since it doesn't actually reserve the required object store memory. Use object spilling that's enabled by default (https://docs.ray.io/en/master/ray-core/objects/object-spilling.html) instead to bypass the object store memory size limitation.
  warnings.warn(
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group_bundle_index parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group_capture_child_tasks parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
  • The actor also produced a pandas deprecation warning:
(pid=4690) /home/pdmurray/Desktop/workspace/ray/python/ray/air/util/tensor_extensions/pandas.py:169: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
  • Warnings were also generated due to setting values on a copy:
(RayTrainWorker pid=4783) /home/pdmurray/Desktop/workspace/ray/python/ray/air/util/data_batch_conversion.py:177: SettingWithCopyWarning:
(RayTrainWorker pid=4783) A value is trying to be set on a copy of a slice from a DataFrame.
(RayTrainWorker pid=4783) Try using .loc[row_indexer,col_indexer] = value instead
  • Finally, as the training run ends the job fails:
2022-08-09 15:28:57,241	INFO tune.py:758 -- Total run time: 22.65 seconds (22.52 seconds for the tuning loop).
(RayTrainWorker pid=4783) Exception ignored in: <function Pool.__del__ at 0x7f57a64c94c0>
(RayTrainWorker pid=4783) Traceback (most recent call last):
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/pool.py", line 268, in __del__
(RayTrainWorker pid=4783)     self._change_notifier.put(None)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/queues.py", line 377, in put
(RayTrainWorker pid=4783)     self._writer.send_bytes(obj)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 205, in send_bytes
(RayTrainWorker pid=4783)     self._send_bytes(m[offset:offset + size])
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 416, in _send_bytes
(RayTrainWorker pid=4783)     self._send(header + buf)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 373, in _send
(RayTrainWorker pid=4783)     n = write(self._handle, buf)
(RayTrainWorker pid=4783) OSError: [Errno 9] Bad file descriptor
(RayTrainWorker pid=4783) Exception ignored in: <function Pool.__del__ at 0x7f57a64c94c0>
(RayTrainWorker pid=4783) Traceback (most recent call last):
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/pool.py", line 268, in __del__
(RayTrainWorker pid=4783)     self._change_notifier.put(None)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/queues.py", line 377, in put
(RayTrainWorker pid=4783)     self._writer.send_bytes(obj)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 205, in send_bytes
(RayTrainWorker pid=4783)     self._send_bytes(m[offset:offset + size])
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 416, in _send_bytes
(RayTrainWorker pid=4783)     self._send(header + buf)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 373, in _send
(RayTrainWorker pid=4783)     n = write(self._handle, buf)
(RayTrainWorker pid=4783) OSError: [Errno 9] Bad file descriptor

4. huggingface_text_classification

  • In the "Fine-tuning the model with Ray AIR" section, at result = trainer.fit() the fit fails with the following error:
2022-08-09 16:33:22,368	ERROR tune.py:754 -- Trials did not complete: [HuggingFaceTrainer_914d5_00000]
2022-08-09 16:33:22,369	INFO tune.py:758 -- Total run time: 38.55 seconds (38.41 seconds for the tuning loop).

---------------------------------------------------------------------------
RayTaskError(ValueError)                  Traceback (most recent call last)
Input In [14], in <cell line: 1>()
----> 1 result = trainer.fit()

File ~/Desktop/workspace/ray/python/ray/train/base_trainer.py:347, in BaseTrainer.fit(self)
    345     result = result_grid[0]
    346     if result.error:
--> 347         raise result.error
    348 except TuneError as e:
    349     raise TrainingFailedError from e

RayTaskError(ValueError): ray::TrainTrainable.train() (pid=7746, ip=172.22.169.255, repr=HuggingFaceTrainer)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/trainable.py", line 347, in train
    result = self.step()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/function_trainable.py", line 417, in step
    self._report_thread_runner_error(block=True)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/function_trainable.py", line 589, in _report_thread_runner_error
    raise e
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/function_trainable.py", line 289, in run
    self._entrypoint()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/function_trainable.py", line 362, in entrypoint
    return self._trainable_func(
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/base_trainer.py", line 458, in _trainable_func
    super()._trainable_func(self._merged_config, reporter, checkpoint_dir)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/function_trainable.py", line 684, in _trainable_func
    output = fn()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/base_trainer.py", line 373, in train_func
    trainer.training_loop()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/data_parallel_trainer.py", line 359, in training_loop
    for results in training_iterator:
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/trainer.py", line 761, in __next__
    self._final_results = self._run_with_error_handling(
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/trainer.py", line 722, in _run_with_error_handling
    return func()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/trainer.py", line 833, in _finish_training
    return self._backend_executor.finish_training()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/backend_executor.py", line 458, in finish_training
    results = self.get_with_failure_handling(futures)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/backend_executor.py", line 477, in get_with_failure_handling
    success = check_for_failure(remote_values)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/utils.py", line 52, in check_for_failure
    ray.get(object_ref)
ray.exceptions.RayTaskError(ValueError): ray::RayTrainWorker._RayTrainWorker__execute() (pid=7786, ip=172.22.169.255, repr=<ray.train._internal.worker_group.RayTrainWorker object at 0x7f255c254400>)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/worker_group.py", line 26, in __execute
    return func(*args, **kwargs)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/backend_executor.py", line 449, in end_training
    output = session.finish()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/session.py", line 140, in finish
    func_output = self.training_thread.join()
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/utils.py", line 98, in join
    raise self.exc
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/utils.py", line 91, in run
    self.ret = self._target(*self._args, **self._kwargs)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/utils.py", line 155, in <lambda>
    return lambda: wrapped_train_func(config)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/_internal/utils.py", line 141, in discard_return_wrapper
    train_func(*args, **kwargs)
  File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/huggingface/huggingface_trainer.py", line 440, in _huggingface_train_loop_per_worker
    raise ValueError(
ValueError: 'steps' value for `evaluation_strategy`, `logging_strategy` or `save_strategy` is not yet supported.

5. sklearn_example

No additional notes, example worked as intended.

6. xgboost_example

  • ray.worker.get_resource_ids deprecation warning
(_RemoteRayXGBoostActor pid=1813) 2022-08-10 10:03:00,292	WARNING __init__.py:192 -- DeprecationWarning: `ray.worker.get_resource_ids` is a private attribute and access will be removed in a future Ray version.
  • Stack is printed due to ray.worker.get_resource_ids being called; python/ray/__init__.py prints the stack for several of these deprecation warnings - see
    worker = _DeprecationWrapper("worker", ray._private.worker)
    . Do we need the stack to appear in the logs when this happens, or was this left over from debugging?
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/workers/default_worker.py", line 237, in <module>
(_RemoteRayXGBoostActor pid=1813)     ray._private.worker.global_worker.main_loop()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/worker.py", line 754, in main_loop
(_RemoteRayXGBoostActor pid=1813)     self.core_worker.run_task_loop()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/function_manager.py", line 674, in actor_method_executor
(_RemoteRayXGBoostActor pid=1813)     return method(__ray_actor, *args, **kwargs)
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/util/tracing/tracing_helper.py", line 466, in _resume_span
(_RemoteRayXGBoostActor pid=1813)     return method(self, *_args, **_kwargs)
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 474, in __init__
(_RemoteRayXGBoostActor pid=1813)     _set_omp_num_threads()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 280, in _set_omp_num_threads
(_RemoteRayXGBoostActor pid=1813)     ray_cpus = _ray_get_actor_cpus()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 262, in _ray_get_actor_cpus
(_RemoteRayXGBoostActor pid=1813)     resource_ids = ray.worker.get_resource_ids()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/__init__.py", line 196, in __getattr__
(_RemoteRayXGBoostActor pid=1813)     traceback.print_stack()

7. analyze_tuning_results

  • Same DeprecationWarning about ray.worker.get_resource_ids as in xgboost_example
  • Same call to traceback.print_stack as in xgboost_example

8. lightgbm_example

  • In this example, the number of requested CPUS is 2*num_workers + 1. Not sure if this is intended.
  • Same DeprecationWarning about ray.worker.get_resource_ids as in xgboost_example
  • Same call to traceback.print_stack as in xgboost_example

9. torch_incremental_learning

During the first training step:

  • No parallelism argument was directly specified in the example. However, a warning about a parallelism argument was generated for some internal call:
(_get_read_tasks pid=1142) 2022-08-10 17:12:36,488	WARNING torch_datasource.py:55 -- `SimpleTorchDatasource` doesn't support parallel reads. The `parallelism` argument will be ignored.
  • Each worker raises a warning about attempting to write to a non-writable tensor:
(RayTrainWorker pid=2418) /home/pdmurray/Desktop/workspace/ray/python/ray/air/_internal/torch_utils.py:122: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at  ../torch/csrc/utils/tensor_numpy.cpp:178.)
(RayTrainWorker pid=2418)   return torch.as_tensor(ndarray, dtype=dtype, device=device)
  • pandas warnings generated about setting with copy:
(BlockWorker pid=2805) /tmp/ipykernel_850/2109910593.py:12: SettingWithCopyWarning:
(BlockWorker pid=2805) A value is trying to be set on a copy of a slice from a DataFrame.
(BlockWorker pid=2805) Try using .loc[row_indexer,col_indexer] = value instead
(BlockWorker pid=2805)
(BlockWorker pid=2805) See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  • ray.serve.api deprecation warning
/tmp/ipykernel_850/4058892929.py:76: UserWarning: From /tmp/ipykernel_850/4058892929.py:76: start (from ray.serve.api) is deprecated and will be removed in a future version Please see https://docs.ray.io/en/latest/serve/index.html
  serve.start()
  • ray.serve.deployment deprecation warning
/tmp/ipykernel_850/1249059442.py:20: UserWarning: From /tmp/ipykernel_850/1249059442.py:20: deploy (from ray.serve.deployment) is deprecated and will be removed in a future version Please see https://docs.ray.io/en/latest/serve/index.html
  deployment.deploy(
  • During the second training step:
(_split_single_block pid=2375) E0810 17:21:35.163463794    2398 chttp2_transport.cc:1103]   Received a GOAWAY with error code ENHANCE_YOUR_CALM and debug data equal to "too_many_pings"

Also, the same errors about setting on a copy of a dataframe and read-only numpy arrays errors also appeared in the second training step.

10. rl_serving_example

/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
  'nearest': pil_image.NEAREST,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
  'bilinear': pil_image.BILINEAR,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
  'bicubic': pil_image.BICUBIC,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
  'hamming': pil_image.HAMMING,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
  'box': pil_image.BOX,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
  'lanczos': pil_image.LANCZOS,
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/offline/estimators/importance_sampling.py:12: DeprecationWarning: invalid escape sequence \p
  """The step-wise IS estimator.
  • rllib deprecation warnings due to invalid escape sequences at the start of fit:
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/models/tf/layers/noisy_layer.py:15: DeprecationWarning: invalid escape sequence \e
  """A Layer that adds learnable Noise to some previous layer's outputs.
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py:517: DeprecationWarning: invalid escape sequence \d
  mo = re.match("state_in_(\d+)", view_col)
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/crr/crr.py:80: DeprecationWarning: invalid escape sequence \m
  """

and

/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/models/tf/layers/noisy_layer.py:15: DeprecationWarning: invalid escape sequence '\e'
  """A Layer that adds learnable Noise to some previous layer's outputs.
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py:516: DeprecationWarning: invalid escape sequence '\d'
  mo = re.match("state_in_(\d+)", view_col)
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/crr/crr.py:82: DeprecationWarning: invalid escape sequence '\m'

Deprecation warnings - same as in tfx_tabular_train_to_serve example:

  • placement_group_parameter

  • object_store_memory

  • placement_group

  • placement_group_bundle_index

  • placement_group_capture_child_tasks

  • Deprecation warnings coming from gym related to using CartPole-v0:

UserWarning: WARN: The environment CartPole-v0 is out of date. You should consider upgrading to version `v1`.
  • Failed to fit; rllib appears to be trying to initialize an object with a shape given by a tensorflow.python.framework.tensor_shape.Dimension, when it should use integers:
(AIRPPO pid=7948) 2022-08-10 17:40:26,433	ERROR worker.py:754 -- Exception raised in creation task: The actor died because of an error raised in its creation task, ray::AIRRLTrainer.__init__() (pid=7948, ip=172.22.61.87, repr=AIRPPO)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 125, in __init__
(AIRPPO pid=7948)     self.add_workers(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 269, in add_workers
(AIRPPO pid=7948)     self.foreach_worker(lambda w: w.assert_healthy())
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 391, in foreach_worker
(AIRPPO pid=7948)     remote_results = ray.get([w.apply.remote(func) for w in self.remote_workers()])
(AIRPPO pid=7948) ray.exceptions.RayActorError: The actor died because of an error raised in its creation task, ray::RolloutWorker.__init__() (pid=7986, ip=172.22.61.87, repr=<ray.rllib.evaluation.rollout_worker.RolloutWorker object at 0x7fde035ec580>)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/rollout_worker.py", line 613, in __init__
(AIRPPO pid=7948)     self._build_policy_map(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/rollout_worker.py", line 1784, in _build_policy_map
(AIRPPO pid=7948)     self.policy_map.create_policy(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/policy_map.py", line 123, in create_policy
(AIRPPO pid=7948)     self[policy_id] = create_policy_for_framework(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/utils/policy.py", line 71, in create_policy_for_framework
(AIRPPO pid=7948)     return policy_class(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/ppo/ppo_tf_policy.py", line 102, in __init__
(AIRPPO pid=7948)     self.maybe_initialize_optimizer_and_loss()
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py", line 670, in maybe_initialize_optimizer_and_loss
(AIRPPO pid=7948)     self._initialize_loss_from_dummy_batch(auto_remove_unneeded_view_reqs=True)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py", line 714, in _initialize_loss_from_dummy_batch
(AIRPPO pid=7948)     space=gym.spaces.Box(
(AIRPPO pid=7948)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/gym/spaces/box.py", line 89, in __init__
(AIRPPO pid=7948)     assert all(
(AIRPPO pid=7948) AssertionError: Expect all shape elements to be an integer, actual type: (<class 'tensorflow.python.framework.tensor_shape.Dimension'>,)
(AIRPPO pid=7948)
(AIRPPO pid=7948) During handling of the above exception, another exception occurred:
(AIRPPO pid=7948)
(AIRPPO pid=7948) ray::AIRRLTrainer.__init__() (pid=7948, ip=172.22.61.87, repr=AIRPPO)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/rl/rl_trainer.py", line 209, in __init__
(AIRPPO pid=7948)     super(AIRRLTrainer, self).__init__(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/algorithm.py", line 308, in __init__
(AIRPPO pid=7948)     super().__init__(config=config, logger_creator=logger_creator, **kwargs)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/trainable.py", line 157, in __init__
(AIRPPO pid=7948)     self.setup(copy.deepcopy(self.config))
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/algorithm.py", line 443, in setup
(AIRPPO pid=7948)     raise e.args[0].args[2]
(AIRPPO pid=7948) AssertionError: Expect all shape elements to be an integer, actual type: (<class 'tensorflow.python.framework.tensor_shape.Dimension'>,)

11. rl_online_example

  • rllib.agents.marwil deprecation warning:
2022-08-12 10:23:26,350	WARNING deprecation.py:47 -- DeprecationWarning: `ray.rllib.agents.marwil` has been deprecated. Use `ray.rllib.algorithms.[marwil|bc]` instead. This will raise an error in the future!

Deprecation warnings - same as in tfx_tabular_train_to_serve example:

  • placement_group_parameter
  • object_store_memory
  • placement_group
  • placement_group_bundle_index
  • placement_group_capture_child_tasks

Same flatbuffers, keras, and CartPole-v0 warnings as in rl_serving_example:

  • flatbuffers use of imp

  • keras calling deprecated pillow functions

  • CartPole-v0 out of date

  • Fails to train due to the same Dimension error as in rl_serving_example:

12. rl_offline_example

Same errors as in the rl_online_example:

Same flatbuffers, keras, and CartPole-v0 warnings as in rl_online_example:

  • flatbuffers use of imp

  • keras calling deprecated pillow functions

  • CartPole-v0 out of date

  • placement_group_parameter

  • object_store_memory

  • placement_group

  • placement_group_bundle_index

  • placement_group_capture_child_tasks

  • rllib.agents.marwil

  • Fit fails because of same tensorflow.python.framework.tensor_shape.Dimension error as in rl_online_example

13. upload_to_comet_ml

  • Same DeprecationWarning about ray.worker.get_resource_ids as in xgboost_example
  • Same call to traceback.print_stack as in xgboost_example
  • Missing comet ML experiment definition at the beginning of the notebook. Might be useful to include another notebook cell with comet configuration, and a note about setting the COMET_API_KEY environment variable. Defining comet_project at the top of the notebook also avoids having it undefined further down. For example:
# import comet_ml at the top of your file
from comet_ml import Experiment
import os

comet_project = "ray_air_example"

# Create an experiment with your api key
experiment = Experiment(
    api_key=os.environ['COMET_API_KEY'],
    project_name=comet_project,
    workspace="peytondmurray",
)
  • Also need a cell with experiment.end() at the end of the notebook

14. upload_to_wandb

  • Same DeprecationWarning about ray.worker.get_resource_ids as in xgboost_example
  • Same call to traceback.print_stack as in xgboost_example
  • Need wandb setup:
  1. Set WANDB_API_KEY environment variable to the your API key
  2. Add call to wandb.init, taking care to set the entity - the API docs say it's optional, but I kept getting an error until I set it:
import wandb

wandb_project = "ray_air_example"
entity = "peytondmurray"

wandb.init(project=wandb_project, entity=entity)

15. feast_example

  • comet_ml deprecation warning about imp module (?):
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/comet_ml/monkey_patching.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp`

Deprecation warnings:

  • placement_group_parameter

  • object_store_memory

  • placement_group

  • placement_group_bundle_index

  • placement_group_capture_child_tasks

  • Same DeprecationWarning about ray.worker.get_resource_ids as in xgboost_example

  • Same call to traceback.print_stack as in xgboost_example

  • Some broken Ray imports:

from ray.ml.preprocessors import Chain, OrdinalEncoder, SimpleImputer

needs to be changed to

from ray.data.preprocessors import Chain, OrdinalEncoder, SimpleImputer

and

from ray.ml.checkpoint import Checkpoint
from ray.ml.predictors.integrations.xgboost import XGBoostPredictor

needs to be changed to

from ray.air.checkpoint import Checkpoint
from ray.train.xgboost import XGBoostPredictor

Versions / Dependencies

Component Version
OS Windows 10, build 19044.1889
Python 3.9.13
platform.platform() Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31

The latest development version of ray (410fe1b) was installed from master via pip install -ve .. All other python dependencies for the examples were installed through pip, as needed. No GPU was used in testing the examples.

Environment
# packages in environment at /home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39:
#
# Name                    Version                   Build  Channel
_libgcc_mutex             0.1                 conda_forge    conda-forge
_openmp_mutex             4.5                       2_gnu    conda-forge
absl-py                   1.2.0                    pypi_0    pypi
aiohttp                   3.8.1                    pypi_0    pypi
aiohttp-cors              0.7.0                    pypi_0    pypi
aiorwlock                 1.3.0                    pypi_0    pypi
aiosignal                 1.2.0                    pypi_0    pypi
alabaster                 0.7.12                   pypi_0    pypi
alembic                   1.8.1                    pypi_0    pypi
anyio                     3.6.1                    pypi_0    pypi
applicationinsights       0.11.10                  pypi_0    pypi
argcomplete               1.12.3                   pypi_0    pypi
argon2-cffi               21.3.0                   pypi_0    pypi
argon2-cffi-bindings      21.2.0                   pypi_0    pypi
asgiref                   3.5.2                    pypi_0    pypi
asttokens                 2.0.5                    pypi_0    pypi
astunparse                1.6.3                    pypi_0    pypi
async-timeout             4.0.2                    pypi_0    pypi
attrs                     22.1.0                   pypi_0    pypi
azure-common              1.1.28                   pypi_0    pypi
babel                     2.10.3                   pypi_0    pypi
backcall                  0.2.0                    pypi_0    pypi
beautifulsoup4            4.11.1                   pypi_0    pypi
bleach                    5.0.1                    pypi_0    pypi
blessed                   1.19.1                   pypi_0    pypi
bzip2                     1.0.8                h7f98852_4    conda-forge
ca-certificates           2022.6.15            ha878542_0    conda-forge
cachetools                5.2.0                    pypi_0    pypi
certifi                   2022.6.15                pypi_0    pypi
cffi                      1.15.1                   pypi_0    pypi
charset-normalizer        2.1.0                    pypi_0    pypi
click                     8.0.4                    pypi_0    pypi
cloudpickle               2.1.0                    pypi_0    pypi
colorama                  0.4.5                    pypi_0    pypi
colorful                  0.5.4                    pypi_0    pypi
comet-ml                  3.31.7                   pypi_0    pypi
configobj                 5.0.6                    pypi_0    pypi
dask                      2022.1.1                 pypi_0    pypi
databricks-cli            0.17.0                   pypi_0    pypi
datasets                  2.4.0                    pypi_0    pypi
debugpy                   1.6.2                    pypi_0    pypi
decorator                 5.1.1                    pypi_0    pypi
defusedxml                0.7.1                    pypi_0    pypi
dill                      0.3.5.1                  pypi_0    pypi
distlib                   0.3.5                    pypi_0    pypi
dm-tree                   0.1.7                    pypi_0    pypi
docker                    5.0.3                    pypi_0    pypi
docker-pycreds            0.4.0                    pypi_0    pypi
dulwich                   0.20.45                  pypi_0    pypi
entrypoints               0.4                      pypi_0    pypi
everett                   3.0.0                    pypi_0    pypi
executing                 0.9.1                    pypi_0    pypi
fastapi                   0.79.0                   pypi_0    pypi
fastavro                  1.5.4                    pypi_0    pypi
fastjsonschema            2.16.1                   pypi_0    pypi
feast                     0.20.1                   pypi_0    pypi
filelock                  3.7.1                    pypi_0    pypi
flask                     2.2.2                    pypi_0    pypi
flatbuffers               1.12                     pypi_0    pypi
frozenlist                1.3.1                    pypi_0    pypi
fsspec                    2022.7.1                 pypi_0    pypi
gast                      0.4.0                    pypi_0    pypi
gitdb                     4.0.9                    pypi_0    pypi
gitpython                 3.1.27                   pypi_0    pypi
google-api-core           2.8.0                    pypi_0    pypi
google-auth               2.10.0                   pypi_0    pypi
google-auth-oauthlib      0.4.6                    pypi_0    pypi
google-pasta              0.2.0                    pypi_0    pypi
googleapis-common-protos  1.52.0                   pypi_0    pypi
gpustat                   1.0.0rc1                 pypi_0    pypi
greenlet                  1.1.2                    pypi_0    pypi
grpcio                    1.43.0                   pypi_0    pypi
grpcio-reflection         1.43.0                   pypi_0    pypi
gunicorn                  20.1.0                   pypi_0    pypi
gym                       0.25.1                   pypi_0    pypi
gym-notices               0.0.7                    pypi_0    pypi
h11                       0.13.0                   pypi_0    pypi
h5py                      3.7.0                    pypi_0    pypi
httptools                 0.3.0                    pypi_0    pypi
huggingface-hub           0.8.1                    pypi_0    pypi
icu                       70.1                 h27087fc_0    conda-forge
idna                      3.3                      pypi_0    pypi
imageio                   2.21.1                   pypi_0    pypi
importlib-metadata        4.12.0                   pypi_0    pypi
iniconfig                 1.1.1                    pypi_0    pypi
ipykernel                 6.15.1                   pypi_0    pypi
ipython                   8.4.0                    pypi_0    pypi
ipython-genutils          0.2.0                    pypi_0    pypi
ipywidgets                7.7.1                    pypi_0    pypi
itsdangerous              2.1.2                    pypi_0    pypi
jedi                      0.18.1                   pypi_0    pypi
jinja2                    3.1.2                    pypi_0    pypi
joblib                    1.1.0                    pypi_0    pypi
json5                     0.9.9                    pypi_0    pypi
jsondiff                  2.0.0                    pypi_0    pypi
jsonschema                4.9.1                    pypi_0    pypi
jupyter-client            7.3.4                    pypi_0    pypi
jupyter-core              4.11.1                   pypi_0    pypi
jupyter-server            1.18.1                   pypi_0    pypi
jupyterlab                3.4.4                    pypi_0    pypi
jupyterlab-pygments       0.2.2                    pypi_0    pypi
jupyterlab-server         2.15.0                   pypi_0    pypi
jupyterlab-widgets        1.1.1                    pypi_0    pypi
keras                     2.9.0                    pypi_0    pypi
keras-preprocessing       1.1.2                    pypi_0    pypi
ld_impl_linux-64          2.36.1               hea4e1c9_2    conda-forge
libclang                  14.0.6                   pypi_0    pypi
libffi                    3.4.2                h7f98852_5    conda-forge
libgcc-ng                 12.1.0              h8d9b700_16    conda-forge
libgomp                   12.1.0              h8d9b700_16    conda-forge
libnsl                    2.0.0                h7f98852_0    conda-forge
libstdcxx-ng              12.1.0              ha89aaad_16    conda-forge
libuuid                   2.32.1            h7f98852_1000    conda-forge
libuv                     1.43.0               h7f98852_0    conda-forge
libzlib                   1.2.12               h166bdaf_2    conda-forge
lightgbm                  3.3.2                    pypi_0    pypi
lightgbm-ray              0.1.4                    pypi_0    pypi
llvmlite                  0.39.0                   pypi_0    pypi
locket                    1.0.0                    pypi_0    pypi
lxml                      4.9.1                    pypi_0    pypi
lz4                       4.0.2                    pypi_0    pypi
mako                      1.2.1                    pypi_0    pypi
markdown                  3.4.1                    pypi_0    pypi
markupsafe                2.1.1                    pypi_0    pypi
matplotlib-inline         0.1.3                    pypi_0    pypi
mistune                   0.8.4                    pypi_0    pypi
mlflow                    1.27.0                   pypi_0    pypi
mmh3                      3.0.0                    pypi_0    pypi
mock                      4.0.3                    pypi_0    pypi
msgpack                   1.0.4                    pypi_0    pypi
multidict                 6.0.2                    pypi_0    pypi
multiprocess              0.70.13                  pypi_0    pypi
mypy-extensions           0.4.3                    pypi_0    pypi
nbclassic                 0.4.3                    pypi_0    pypi
nbclient                  0.6.6                    pypi_0    pypi
nbconvert                 6.5.0                    pypi_0    pypi
nbformat                  5.4.0                    pypi_0    pypi
ncurses                   6.3                  h27087fc_1    conda-forge
nest-asyncio              1.5.5                    pypi_0    pypi
networkx                  2.8.5                    pypi_0    pypi
nodejs                    14.18.3              h96d913c_3    conda-forge
notebook                  6.4.12                   pypi_0    pypi
notebook-shim             0.1.0                    pypi_0    pypi
numba                     0.56.0                   pypi_0    pypi
numpy                     1.22.4                   pypi_0    pypi
nvidia-ml-py              11.495.46                pypi_0    pypi
nvidia-ml-py3             7.352.0                  pypi_0    pypi
oauthlib                  3.2.0                    pypi_0    pypi
opencensus                0.11.0                   pypi_0    pypi
opencensus-context        0.1.3                    pypi_0    pypi
openssl                   1.1.1q               h166bdaf_0    conda-forge
opentelemetry-api         1.1.0                    pypi_0    pypi
opentelemetry-semantic-conventions 0.20b0                   pypi_0    pypi
opt-einsum                3.3.0                    pypi_0    pypi
packaging                 21.3                     pypi_0    pypi
pandas                    1.4.3                    pypi_0    pypi
pandavro                  1.5.2                    pypi_0    pypi
pandocfilters             1.5.0                    pypi_0    pypi
parso                     0.8.3                    pypi_0    pypi
partd                     1.3.0                    pypi_0    pypi
path                      16.4.0                   pypi_0    pypi
pathtools                 0.1.2                    pypi_0    pypi
pbr                       5.9.0                    pypi_0    pypi
pexpect                   4.8.0                    pypi_0    pypi
pickleshare               0.7.5                    pypi_0    pypi
pillow                    9.2.0                    pypi_0    pypi
pip                       22.2.1             pyhd8ed1ab_0    conda-forge
pkginfo                   1.8.3                    pypi_0    pypi
platformdirs              2.5.2                    pypi_0    pypi
pluggy                    1.0.0                    pypi_0    pypi
portalocker               1.7.1                    pypi_0    pypi
prometheus-client         0.13.1                   pypi_0    pypi
prometheus-flask-exporter 0.20.3                   pypi_0    pypi
promise                   2.3                      pypi_0    pypi
prompt-toolkit            3.0.30                   pypi_0    pypi
proto-plus                1.19.6                   pypi_0    pypi
protobuf                  3.19.4                   pypi_0    pypi
proxy-py                  2.4.3                    pypi_0    pypi
psutil                    5.9.1                    pypi_0    pypi
ptyprocess                0.7.0                    pypi_0    pypi
pure-eval                 0.2.2                    pypi_0    pypi
py                        1.11.0                   pypi_0    pypi
py-spy                    0.3.12                   pypi_0    pypi
py4j                      0.10.9                   pypi_0    pypi
pyarrow                   6.0.1                    pypi_0    pypi
pyasn1                    0.4.8                    pypi_0    pypi
pyasn1-modules            0.2.8                    pypi_0    pypi
pycparser                 2.21                     pypi_0    pypi
pydantic                  1.9.1                    pypi_0    pypi
pygame                    2.1.2                    pypi_0    pypi
pygments                  2.12.0                   pypi_0    pypi
pyjwt                     2.4.0                    pypi_0    pypi
pyparsing                 3.0.9                    pypi_0    pypi
pyrsistent                0.18.1                   pypi_0    pypi
pysocks                   1.7.1                    pypi_0    pypi
pyspark                   3.1.2                    pypi_0    pypi
python                    3.9.13          h9a8a25e_0_cpython    conda-forge
python-dateutil           2.8.2                    pypi_0    pypi
python-dotenv             0.20.0                   pypi_0    pypi
python_abi                3.9                      2_cp39    conda-forge
pytz                      2022.1                   pypi_0    pypi
pywavelets                1.3.0                    pypi_0    pypi
pyyaml                    6.0                      pypi_0    pypi
pyzmq                     23.2.0                   pypi_0    pypi
querystring-parser        1.2.4                    pypi_0    pypi
ray                       3.0.0.dev0                dev_0    <develop>
readline                  8.1.2                h0f457ee_0    conda-forge
redis                     3.5.3                    pypi_0    pypi
regex                     2022.7.25                pypi_0    pypi
requests                  2.28.1                   pypi_0    pypi
requests-oauthlib         1.3.1                    pypi_0    pypi
requests-toolbelt         0.9.1                    pypi_0    pypi
responses                 0.18.0                   pypi_0    pypi
rsa                       4.9                      pypi_0    pypi
scikit-image              0.19.3                   pypi_0    pypi
scikit-learn              1.1.2                    pypi_0    pypi
scipy                     1.9.0                    pypi_0    pypi
semantic-version          2.10.0                   pypi_0    pypi
send2trash                1.8.0                    pypi_0    pypi
sentry-sdk                1.9.4                    pypi_0    pypi
setproctitle              1.3.2                    pypi_0    pypi
setuptools                63.3.0           py39hf3d152e_0    conda-forge
shortuuid                 1.0.9                    pypi_0    pypi
six                       1.16.0                   pypi_0    pypi
sklearn                   0.0                      pypi_0    pypi
smart-open                6.0.0                    pypi_0    pypi
smmap                     5.0.0                    pypi_0    pypi
sniffio                   1.2.0                    pypi_0    pypi
snowballstemmer           2.2.0                    pypi_0    pypi
soupsieve                 2.3.2.post1              pypi_0    pypi
sphinxcontrib-applehelp   1.0.2                    pypi_0    pypi
sphinxcontrib-devhelp     1.0.2                    pypi_0    pypi
sphinxcontrib-htmlhelp    2.0.0                    pypi_0    pypi
sphinxcontrib-jsmath      1.0.1                    pypi_0    pypi
sphinxcontrib-qthelp      1.0.3                    pypi_0    pypi
sphinxcontrib-serializinghtml 1.1.5                    pypi_0    pypi
sqlalchemy                1.4.40                   pypi_0    pypi
sqlite                    3.39.2               h4ff8645_0    conda-forge
sqlparse                  0.4.2                    pypi_0    pypi
stack-data                0.3.0                    pypi_0    pypi
starlette                 0.19.1                   pypi_0    pypi
tabulate                  0.8.10                   pypi_0    pypi
tenacity                  8.0.1                    pypi_0    pypi
tensorboard               2.9.1                    pypi_0    pypi
tensorboard-data-server   0.6.1                    pypi_0    pypi
tensorboard-plugin-wit    1.8.1                    pypi_0    pypi
tensorboardx              2.5.1                    pypi_0    pypi
tensorflow                2.9.1                    pypi_0    pypi
tensorflow-estimator      2.9.0                    pypi_0    pypi
tensorflow-io-gcs-filesystem 0.26.0                   pypi_0    pypi
tensorflow-metadata       1.9.0                    pypi_0    pypi
termcolor                 1.1.0                    pypi_0    pypi
terminado                 0.15.0                   pypi_0    pypi
testfixtures              7.0.0                    pypi_0    pypi
threadpoolctl             3.1.0                    pypi_0    pypi
tifffile                  2022.8.8                 pypi_0    pypi
tinycss2                  1.1.1                    pypi_0    pypi
tk                        8.6.12               h27826a3_0    conda-forge
tokenizers                0.12.1                   pypi_0    pypi
toml                      0.10.2                   pypi_0    pypi
tomli                     2.0.1                    pypi_0    pypi
toolz                     0.12.0                   pypi_0    pypi
torch                     1.12.1                   pypi_0    pypi
torchvision               0.13.1                   pypi_0    pypi
tornado                   6.2                      pypi_0    pypi
tqdm                      4.64.0                   pypi_0    pypi
traitlets                 5.3.0                    pypi_0    pypi
transformers              4.21.1                   pypi_0    pypi
typing-extensions         4.3.0                    pypi_0    pypi
tzdata                    2022a                h191b570_0    conda-forge
uritemplate               4.1.1                    pypi_0    pypi
urllib3                   1.26.11                  pypi_0    pypi
uvicorn                   0.16.0                   pypi_0    pypi
uvloop                    0.16.0                   pypi_0    pypi
virtualenv                20.16.2                  pypi_0    pypi
wandb                     0.13.1                   pypi_0    pypi
watchgod                  0.8.2                    pypi_0    pypi
wcwidth                   0.2.5                    pypi_0    pypi
webencodings              0.5.1                    pypi_0    pypi
websocket-client          1.3.3                    pypi_0    pypi
websockets                10.3                     pypi_0    pypi
werkzeug                  2.2.2                    pypi_0    pypi
wheel                     0.37.1             pyhd8ed1ab_0    conda-forge
widgetsnbextension        3.6.1                    pypi_0    pypi
wrapt                     1.14.1                   pypi_0    pypi
wurlitzer                 3.0.2                    pypi_0    pypi
xgboost                   1.6.1                    pypi_0    pypi
xgboost-ray               0.1.9                    pypi_0    pypi
xlrd                      2.0.1                    pypi_0    pypi
xmltodict                 0.13.0                   pypi_0    pypi
xxhash                    3.0.0                    pypi_0    pypi
xz                        5.2.5                h516909a_1    conda-forge
yarl                      1.8.1                    pypi_0    pypi
yarn                      1.22.19              ha770c72_0    conda-forge
zipp                      3.8.1                    pypi_0    pypi
zlib                      1.2.12               h166bdaf_2    conda-forge

Reproduction script

Here are the notebooks for the examples I ran. Some of them may vary slightly from the examples; most of the time I bumped up the number of cpus. In cases where the example couldn't run without being fixed, I made the necessary changes to make the example run, if possible.

ipynbs.zip

Issue Severity

Low: It annoys or frustrates me.

@peytondmurray peytondmurray added bug Something that is supposed to be working; but isn't triage Needs triage (eg: priority, bug/not-bug, and owning component) labels Aug 13, 2022
@mattip
Copy link
Contributor

mattip commented Aug 14, 2022

It might make sense to split these up into groups: fail to run to completion, emits internal deprecation warnings, emits other warnings, fails to produce the correct answer. Some examples may appear in more than one group.

@peytondmurray
Copy link
Contributor Author

peytondmurray commented Aug 16, 2022

In an effort to make the notes more useful, I've grouped the issues I encountered above together so that we can more easily track them and check them off the list as they are addressed. They're grouped into internal warnings, errors, other warnings, and other todo items. I've labeled problems that I think are specific to a single example with the name of the affected example. @mattip Hopefully this is useful, but if you still think it would be good to group the examples by the problems encountered, I can do that too.

Internal warnings

[All four are fixed by #28315]

  • object_store_memory
  • placement_group
  • placement_group_bundle_index
  • placement_group_capture_child_tasks
Details
/home/pdmurray/Desktop/workspace/ray/python/ray/util/placement_group.py:78: DeprecationWarning: placement_group parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return bundle_reservation_check.options(
/home/pdmurray/Desktop/workspace/ray/python/ray/_private/ray_option_utils.py:266: DeprecationWarning: Setting 'object_store_memory' for actors is deprecated since it doesn't actually reserve the required object store memory. Use object spilling that's enabled by default (https://docs.ray.io/en/master/ray-core/objects/object-spilling.html) instead to bypass the object store memory size limitation.
  warnings.warn(
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group_bundle_index parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
/home/pdmurray/Desktop/workspace/ray/python/ray/actor.py:637: DeprecationWarning: placement_group_capture_child_tasks parameter is deprecated. Use scheduling_strategy=PlacementGroupSchedulingStrategy(...) instead, see the usage at https://docs.ray.io/en/master/ray-core/package-ref.html#ray-remote.
  return actor_cls._remote(args=args, kwargs=kwargs, **updated_options)
Details
(pid=4690) /home/pdmurray/Desktop/workspace/ray/python/ray/air/util/tensor_extensions/pandas.py:169: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
  • ray.worker.get_resource_ids
Details
(_RemoteRayXGBoostActor pid=1813) 2022-08-10 10:03:00,292	WARNING __init__.py:192 -- DeprecationWarning: `ray.worker.get_resource_ids` is a private attribute and access will be removed in a future Ray version.
  • Setting values on a copy of a slice from a DataFrame in data_batch_conversion.py
Details
(RayTrainWorker pid=4783) /home/pdmurray/Desktop/workspace/ray/python/ray/air/util/data_batch_conversion.py:177: SettingWithCopyWarning:
(RayTrainWorker pid=4783) A value is trying to be set on a copy of a slice from a DataFrame.
(RayTrainWorker pid=4783) Try using .loc[row_indexer,col_indexer] = value instead
  • parallelism argument passed to SimpleTorchDatasource. After looking into this, I'm leaving this as is because the SimpleTorchDatasource cannot make use of parallelism, and it says so in the docstring for the class. It also says as much in the torch_incremental_learning example, so although strictly speaking the user wasn't the one passing in a parallelism argument here, I think it's okay to leave as is because it's probably not the right tool for the job if you're loading a lot of data.
Details
(_get_read_tasks pid=1142) 2022-08-10 17:12:36,488	WARNING torch_datasource.py:55 -- `SimpleTorchDatasource` doesn't support parallel reads. The `parallelism` argument will be ignored.
  • ray.serve.api
Details
/tmp/ipykernel_850/4058892929.py:76: UserWarning: From /tmp/ipykernel_850/4058892929.py:76: start (from ray.serve.api) is deprecated and will be removed in a future version Please see https://docs.ray.io/en/latest/serve/index.html
  serve.start()
  • ray.serve.deployment
Details
/tmp/ipykernel_850/1249059442.py:20: UserWarning: From /tmp/ipykernel_850/1249059442.py:20: deploy (from ray.serve.deployment) is deprecated and will be removed in a future version Please see https://docs.ray.io/en/latest/serve/index.html
  deployment.deploy(
  • Writing to a non-writable tensor
Details
(RayTrainWorker pid=2418) /home/pdmurray/Desktop/workspace/ray/python/ray/air/_internal/torch_utils.py:122: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at  ../torch/csrc/utils/tensor_numpy.cpp:178.)
(RayTrainWorker pid=2418)   return torch.as_tensor(ndarray, dtype=dtype, device=device)
  • rllib invalid escape sequences
Details
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/models/tf/layers/noisy_layer.py:15: DeprecationWarning: invalid escape sequence \e
  """A Layer that adds learnable Noise to some previous layer's outputs.
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py:517: DeprecationWarning: invalid escape sequence \d
  mo = re.match("state_in_(\d+)", view_col)
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/crr/crr.py:80: DeprecationWarning: invalid escape sequence \m
  """

and

/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/models/tf/layers/noisy_layer.py:15: DeprecationWarning: invalid escape sequence '\e'
  """A Layer that adds learnable Noise to some previous layer's outputs.
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py:516: DeprecationWarning: invalid escape sequence '\d'
  mo = re.match("state_in_(\d+)", view_col)
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/crr/crr.py:82: DeprecationWarning: invalid escape sequence '\m'
  • rllib.agents.marwil deprecation warning
Details
2022-08-12 10:23:26,350	WARNING deprecation.py:47 -- DeprecationWarning: `ray.rllib.agents.marwil` has been deprecated. Use `ray.rllib.algorithms.[marwil|bc]` instead. This will raise an error in the future!

Other warnings

Details
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/flatbuffers/compat.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp
Details
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:36: DeprecationWarning: NEAREST is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.NEAREST or Dither.NONE instead.
  'nearest': pil_image.NEAREST,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:37: DeprecationWarning: BILINEAR is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BILINEAR instead.
  'bilinear': pil_image.BILINEAR,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:38: DeprecationWarning: BICUBIC is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BICUBIC instead.
  'bicubic': pil_image.BICUBIC,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:39: DeprecationWarning: HAMMING is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.HAMMING instead.
  'hamming': pil_image.HAMMING,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:40: DeprecationWarning: BOX is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.BOX instead.
  'box': pil_image.BOX,
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/keras/utils/image_utils.py:41: DeprecationWarning: LANCZOS is deprecated and will be removed in Pillow 10 (2023-07-01). Use Resampling.LANCZOS instead.
  'lanczos': pil_image.LANCZOS,
/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/offline/estimators/importance_sampling.py:12: DeprecationWarning: invalid escape sequence \p
  """The step-wise IS estimator.
  • gym deprecated CartPole-v0; use CartPole-v1
Details
UserWarning: WARN: The environment CartPole-v0 is out of date. You should consider upgrading to version `v1`.
  • feast_example: comet_ml uses imp module
Details
/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/comet_ml/monkey_patching.py:19: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
  import imp`
  • torch_incremental_learning: too_many_pings during the second training step
Details
(_split_single_block pid=2375) E0810 17:21:35.163463794    2398 chttp2_transport.cc:1103]   Received a GOAWAY with error code ENHANCE_YOUR_CALM and debug data equal to "too_many_pings"
  • torch_incremental_learning: Deployment.options() deprecation warning
Details
2022-09-21 13:28:43,714	WARNING deployment.py:331 -- DeprecationWarning: `version` in `Deployment.options()` has been deprecated. Explicitly specifying version will raise an error in the future!
  • torch_incremental_learning: SettingWithCopyWarning

Errors - fails to run

Details

Affects the following examples:

  • rl_serving_example
  • rl_online_example
  • rl_offline_example
(AIRPPO pid=7948) 2022-08-10 17:40:26,433	ERROR worker.py:754 -- Exception raised in creation task: The actor died because of an error raised in its creation task, ray::AIRRLTrainer.__init__() (pid=7948, ip=172.22.61.87, repr=AIRPPO)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 125, in __init__
(AIRPPO pid=7948)     self.add_workers(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 269, in add_workers
(AIRPPO pid=7948)     self.foreach_worker(lambda w: w.assert_healthy())
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/worker_set.py", line 391, in foreach_worker
(AIRPPO pid=7948)     remote_results = ray.get([w.apply.remote(func) for w in self.remote_workers()])
(AIRPPO pid=7948) ray.exceptions.RayActorError: The actor died because of an error raised in its creation task, ray::RolloutWorker.__init__() (pid=7986, ip=172.22.61.87, repr=<ray.rllib.evaluation.rollout_worker.RolloutWorker object at 0x7fde035ec580>)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/rollout_worker.py", line 613, in __init__
(AIRPPO pid=7948)     self._build_policy_map(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/evaluation/rollout_worker.py", line 1784, in _build_policy_map
(AIRPPO pid=7948)     self.policy_map.create_policy(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/policy_map.py", line 123, in create_policy
(AIRPPO pid=7948)     self[policy_id] = create_policy_for_framework(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/utils/policy.py", line 71, in create_policy_for_framework
(AIRPPO pid=7948)     return policy_class(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/ppo/ppo_tf_policy.py", line 102, in __init__
(AIRPPO pid=7948)     self.maybe_initialize_optimizer_and_loss()
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py", line 670, in maybe_initialize_optimizer_and_loss
(AIRPPO pid=7948)     self._initialize_loss_from_dummy_batch(auto_remove_unneeded_view_reqs=True)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/policy/dynamic_tf_policy_v2.py", line 714, in _initialize_loss_from_dummy_batch
(AIRPPO pid=7948)     space=gym.spaces.Box(
(AIRPPO pid=7948)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/gym/spaces/box.py", line 89, in __init__
(AIRPPO pid=7948)     assert all(
(AIRPPO pid=7948) AssertionError: Expect all shape elements to be an integer, actual type: (<class 'tensorflow.python.framework.tensor_shape.Dimension'>,)
(AIRPPO pid=7948)
(AIRPPO pid=7948) During handling of the above exception, another exception occurred:
(AIRPPO pid=7948)
(AIRPPO pid=7948) ray::AIRRLTrainer.__init__() (pid=7948, ip=172.22.61.87, repr=AIRPPO)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/train/rl/rl_trainer.py", line 209, in __init__
(AIRPPO pid=7948)     super(AIRRLTrainer, self).__init__(
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/algorithm.py", line 308, in __init__
(AIRPPO pid=7948)     super().__init__(config=config, logger_creator=logger_creator, **kwargs)
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/tune/trainable/trainable.py", line 157, in __init__
(AIRPPO pid=7948)     self.setup(copy.deepcopy(self.config))
(AIRPPO pid=7948)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/rllib/algorithms/algorithm.py", line 443, in setup
(AIRPPO pid=7948)     raise e.args[0].args[2]
(AIRPPO pid=7948) AssertionError: Expect all shape elements to be an integer, actual type: (<class 'tensorflow.python.framework.tensor_shape.Dimension'>,)
  • tfx_tabular_train_to_serve: Bad file descriptor [Note: this bug is upstream, and will be fixed in Tensorflow 2.10. See [AIR] [Error 9] Bad file descriptor after running TensorflowTrainer.fit #25142 for workaround and more info.] Marking as complete because tensorflow isn't a hard dependency, and the AIR examples say to install tensorflow>=2.8.0 - which at this point should install tensorflow 2.10.
Details
2022-08-09 15:28:57,241	INFO tune.py:758 -- Total run time: 22.65 seconds (22.52 seconds for the tuning loop).
(RayTrainWorker pid=4783) Exception ignored in: <function Pool.__del__ at 0x7f57a64c94c0>
(RayTrainWorker pid=4783) Traceback (most recent call last):
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/pool.py", line 268, in __del__
(RayTrainWorker pid=4783)     self._change_notifier.put(None)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/queues.py", line 377, in put
(RayTrainWorker pid=4783)     self._writer.send_bytes(obj)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 205, in send_bytes
(RayTrainWorker pid=4783)     self._send_bytes(m[offset:offset + size])
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 416, in _send_bytes
(RayTrainWorker pid=4783)     self._send(header + buf)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 373, in _send
(RayTrainWorker pid=4783)     n = write(self._handle, buf)
(RayTrainWorker pid=4783) OSError: [Errno 9] Bad file descriptor
(RayTrainWorker pid=4783) Exception ignored in: <function Pool.__del__ at 0x7f57a64c94c0>
(RayTrainWorker pid=4783) Traceback (most recent call last):
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/pool.py", line 268, in __del__
(RayTrainWorker pid=4783)     self._change_notifier.put(None)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/queues.py", line 377, in put
(RayTrainWorker pid=4783)     self._writer.send_bytes(obj)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 205, in send_bytes
(RayTrainWorker pid=4783)     self._send_bytes(m[offset:offset + size])
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 416, in _send_bytes
(RayTrainWorker pid=4783)     self._send(header + buf)
(RayTrainWorker pid=4783)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/multiprocessing/connection.py", line 373, in _send
(RayTrainWorker pid=4783)     n = write(self._handle, buf)
(RayTrainWorker pid=4783) OSError: [Errno 9] Bad file descriptor

Other todo items

Details

Extra ":

scaling_config=ScalingConfig(num_workers=8, "use_gpu=True)
  • upload_to_comet_ml: Add comet_ml setup and teardown
Details

Example information to include near the top of the notebook

# import comet_ml at the top of your file
from comet_ml import Experiment
import os

comet_project = "ray_air_example"

# Create an experiment with your api key
experiment = Experiment(
    api_key=os.environ['COMET_API_KEY'],
    project_name=comet_project,
    workspace="your_user_name",
)

# Rest of the example goes here

experiment.end()
  • upload_to_wandb: Add wandb setup
Details
  1. Set WANDB_API_KEY environment variable to the your API key
  2. Add call to wandb.init, taking care to set the entity - the API docs say it's optional, but an error gets thrown if it isn't set.
import wandb

wandb_project = "ray_air_example"
entity = "peytondmurray"

wandb.init(project=wandb_project, entity=entity)
  • feast_example: Broken ray imports
Details
from ray.ml.preprocessors import Chain, OrdinalEncoder, SimpleImputer

changes to

from ray.data.preprocessors import Chain, OrdinalEncoder, SimpleImputer

and

from ray.ml.checkpoint import Checkpoint
from ray.ml.predictors.integrations.xgboost import XGBoostPredictor

changes to

from ray.air.checkpoint import Checkpoint
from ray.train.xgboost import XGBoostPredictor
  • Stack is printed when deprecated module is used
Details
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/workers/default_worker.py", line 237, in <module>
(_RemoteRayXGBoostActor pid=1813)     ray._private.worker.global_worker.main_loop()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/worker.py", line 754, in main_loop
(_RemoteRayXGBoostActor pid=1813)     self.core_worker.run_task_loop()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/_private/function_manager.py", line 674, in actor_method_executor
(_RemoteRayXGBoostActor pid=1813)     return method(__ray_actor, *args, **kwargs)
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/util/tracing/tracing_helper.py", line 466, in _resume_span
(_RemoteRayXGBoostActor pid=1813)     return method(self, *_args, **_kwargs)
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 474, in __init__
(_RemoteRayXGBoostActor pid=1813)     _set_omp_num_threads()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 280, in _set_omp_num_threads
(_RemoteRayXGBoostActor pid=1813)     ray_cpus = _ray_get_actor_cpus()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/.pyenv/versions/mambaforge/envs/ray-py39/lib/python3.9/site-packages/xgboost_ray/main.py", line 262, in _ray_get_actor_cpus
(_RemoteRayXGBoostActor pid=1813)     resource_ids = ray.worker.get_resource_ids()
(_RemoteRayXGBoostActor pid=1813)   File "/home/pdmurray/Desktop/workspace/ray/python/ray/__init__.py", line 196, in __getattr__
(_RemoteRayXGBoostActor pid=1813)     traceback.print_stack()
  • feast_example: Use of np.float instead of float generates deprecation warning. Some columns are not numbers, so setting dtype=np.float or even dtype=float won't work. Best to just drop the dtype parameter here.
  • feast_example: Writes example data first to $(pwd)/air-feast-example/ before movign the contents of that directory to ~/ray-air-feast-example, leaving behind an empty air-feast-example directory. The move fails if there's already a directory at ~/ray-air-feast-example. Might be better to write to the local directory.__

@mattip
Copy link
Contributor

mattip commented Aug 17, 2022

The "Bad file descriptor" in tfx_tabular_train_to_serve is related to #25142. There is a work-around in the issue using atexit, and the fix will be part of tensorflow 2.10.

@mattip
Copy link
Contributor

mattip commented Aug 17, 2022

Does the rllib initialization error in rl_serving_example, rl_online_example, and rl_offline_example reproduce on linux as well or is it Windows only?

@mattip
Copy link
Contributor

mattip commented Aug 17, 2022

Thanks! This was quite an effort!

@peytondmurray
Copy link
Contributor Author

peytondmurray commented Aug 17, 2022

@mattip I just tried running the rl_offline_example on linux with the same commit and the same environment I used on Windows and it did not run successfully. However, on my usual linux dev environment, the example runs. So I don't think this is a windows-only issue.

I also tried creating an environment from scratch by doing

pip install -ve . .[rllib] .[air] .[tune] .[data] gym tensorflow pygame

(tensorflow and pygame had to be installed separately to run the example). Running the rl_offline_example again seems to work, so at least that one looks like it is an environment-related issue 😕

Here's the output of pip list --outdated, it must be something in here responsible for the differences:

Outdated packages
Package Version Latest Type
asttokens 2.0.5 2.0.8 wheel
attrs 21.4.0 22.1.0 wheel
black 21.12b0 22.6.0 wheel
certifi 2022.5.18.12022.6.15wheel
cffi 1.15.0 1.15.1 wheel
charset-normalizer 2.0.12 2.1.0 wheel
click 8.0.4 8.1.3 wheel
colorama 0.4.4 0.4.5 wheel
cryptography 37.0.2 37.0.4 wheel
dask 2022.6.1 2022.8.0 wheel
debugpy 1.6.0 1.6.3 wheel
distributed 2022.6.1 2022.8.0 wheel
executing 0.8.3 0.10.0 wheel
fastjsonschema 2.15.3 2.16.1 wheel
flake8 3.9.1 5.0.4 wheel
flake8-bugbear 21.9.2 22.7.1 wheel
flake8-quotes 2.0.0 3.3.1 sdist
flatbuffers 1.12 2.0 wheel
frozenlist 1.3.0 1.3.1 wheel
fsspec 2022.5.0 2022.7.1 wheel
gast 0.4.0 0.5.3 wheel
google-auth-oauthlib0.4.6 0.5.2 wheel
grpcio 1.43.0 1.47.0 wheel
gym 0.23.1 0.25.1 sdist
ipykernel 6.15.0 6.15.1 wheel
json5 0.9.8 0.9.9 wheel
jsonschema 4.6.1 4.10.2 wheel
jupyter-core 4.10.0 4.11.1 wheel
jupyter-server 1.18.0 1.18.1 wheel
jupyterlab 3.4.3 3.4.5 wheel
jupyterlab-server 2.14.0 2.15.0 wheel
matplotlib-inline 0.1.3 0.1.5 wheel
mccabe 0.6.1 0.7.0 wheel
mistune 0.8.4 2.0.4 wheel
mypy 0.782 0.971 wheel
nbclassic 0.4.0 0.4.3 wheel
nbconvert 6.5.0 6.5.3 wheel
nvidia-ml-py 11.495.46 11.515.48wheel
partd 1.2.0 1.3.0 wheel
pip 22.1.2 22.2.2 wheel
prometheus-client 0.13.1 0.14.1 wheel
protobuf 3.19.4 4.21.5 wheel
pyarrow 6.0.1 9.0.0 wheel
pycodestyle 2.7.0 2.9.1 wheel
pyflakes 2.3.1 2.5.0 wheel
Pygments 2.12.0 2.13.0 wheel
python-lsp-server 1.4.1 1.5.0 wheel
pytz 2022.1 2022.2.1 wheel
pyzmq 23.2.0 23.2.1 wheel
requests 2.27.1 2.28.1 wheel
setuptools 62.3.2 65.0.2 wheel
SQLAlchemy 1.4.39 1.4.40 wheel
stack-data 0.3.0 0.4.0 wheel
starlette 0.19.1 0.20.4 wheel
tensorboard 2.9.1 2.10.0 wheel
tomli 1.2.3 2.0.1 wheel
toolz 0.11.2 0.12.0 wheel
typed-ast 1.4.3 1.5.4 wheel
typing_extensions 4.2.0 4.3.0 wheel
ujson 5.3.0 5.4.0 wheel
urllib3 1.26.9 1.26.11 wheel
uvicorn 0.16.0 0.18.2 wheel
yarl 1.7.2 1.8.1 wheel
zipp 3.8.0 3.8.1 wheel

Edit: it looks like at least for rl_serving_example, rl_online_example, and rl_offline_example, the failure to fit is related to having the wrong version of gym installed. With gym==0.23.1 it seems to run, but with gym==0.25.1 (which is what you get if you pip install gym) it's broken.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something that is supposed to be working; but isn't P1 Issue that should be fixed within a few weeks
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants