Skip to content

Commit

Permalink
Add alternative weight loading strategy as backup (#82)
Browse files Browse the repository at this point in the history
  • Loading branch information
rasbt authored Mar 20, 2024
1 parent 83ea93a commit 9638cbb
Show file tree
Hide file tree
Showing 10 changed files with 621 additions and 6 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
ch05/02_alternative_weight_loading/checkpoints
ch05/01_main-chapter-code/the-verdict.txt

.DS_Store
Expand Down
7 changes: 7 additions & 0 deletions ch05/01_main-chapter-code/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# Chapter 5: Pretraining on Unlabeled Data

- [ch05.ipynb](ch05.ipynb) contains all the code as it appears in the chapter
- [previous_chapters.py](previous_chapters.py) is a Python module that contains the `MultiHeadAttention` module from the previous chapter, which we import in [ch05.ipynb](ch05.ipynb) to pretrain the GPT model
- [train.py](train.py) is a standalone Python script file with the code that we implemented in [ch05.ipynb](ch05.ipynb) to train the GPT model
- [generate.py](generate.py) is a standalone Python script file with the code that we implemented in [ch05.ipynb](ch05.ipynb) to load and use the pretrained model weights from OpenAI

9 changes: 5 additions & 4 deletions ch05/01_main-chapter-code/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,16 +199,17 @@ def main(gpt_config, input_prompt, model_size):
gpt = GPTModel(gpt_config)
load_weights_into_gpt(gpt, params)
gpt.to(device)
gpt.eval()

tokenizer = tiktoken.get_encoding("gpt2")

token_ids = generate(
model=gpt,
idx=text_to_token_ids(input_prompt, tokenizer),
max_new_tokens=65,
max_new_tokens=30,
context_size=gpt_config["ctx_len"],
top_k=50,
temperature=1.5
top_k=1,
temperature=1.0
)

print("Output text:\n", token_ids_to_text(token_ids, tokenizer))
Expand All @@ -219,7 +220,7 @@ def main(gpt_config, input_prompt, model_size):
torch.manual_seed(123)

CHOOSE_MODEL = "gpt2-small"
INPUT_PROMPT = "Every effort moves you"
INPUT_PROMPT = "Every effort moves"

BASE_CONFIG = {
"vocab_size": 50257, # Vocabulary size
Expand Down
5 changes: 5 additions & 0 deletions ch05/02_alternative_weight_loading/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
# Alternative Weight Loading

This folder contains alternative weight loading strategies in case the weights become unavailable from Open AI.

- [weight-loading-hf-transformers.ipynb](weight-loading-hf-transformers.ipynb): contains code to load the weights from the Hugging Face Model Hub via the `transformers` library
287 changes: 287 additions & 0 deletions ch05/02_alternative_weight_loading/previous_chapters.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
# This file collects all the relevant code that we covered thus far
# throughout Chapters 2-4.
# This file can be run as a standalone script.

import tiktoken
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

#####################################
# Chapter 2
#####################################


class GPTDatasetV1(Dataset):
def __init__(self, txt, tokenizer, max_length, stride):
self.tokenizer = tokenizer
self.input_ids = []
self.target_ids = []

# Tokenize the entire text
token_ids = tokenizer.encode(txt)

# Use a sliding window to chunk the book into overlapping sequences of max_length
for i in range(0, len(token_ids) - max_length, stride):
input_chunk = token_ids[i:i + max_length]
target_chunk = token_ids[i + 1: i + max_length + 1]
self.input_ids.append(torch.tensor(input_chunk))
self.target_ids.append(torch.tensor(target_chunk))

def __len__(self):
return len(self.input_ids)

def __getitem__(self, idx):
return self.input_ids[idx], self.target_ids[idx]


def create_dataloader_v1(txt, batch_size=4, max_length=256,
stride=128, shuffle=True, drop_last=True):
# Initialize the tokenizer
tokenizer = tiktoken.get_encoding("gpt2")

# Create dataset
dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)

# Create dataloader
dataloader = DataLoader(
dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)

return dataloader


#####################################
# Chapter 3
#####################################
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by n_heads"

self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim

self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
self.dropout = nn.Dropout(dropout)
self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))

def forward(self, x):
b, num_tokens, d_in = x.shape

keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
queries = self.W_query(x)
values = self.W_value(x)

# We implicitly split the matrix by adding a `num_heads` dimension
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)

# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
keys = keys.transpose(1, 2)
queries = queries.transpose(1, 2)
values = values.transpose(1, 2)

# Compute scaled dot-product attention (aka self-attention) with a causal mask
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head

# Original mask truncated to the number of tokens and converted to boolean
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]

# Use the mask to fill attention scores
attn_scores.masked_fill_(mask_bool, -torch.inf)

attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)

# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)

# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection

return context_vec


#####################################
# Chapter 4
#####################################
class LayerNorm(nn.Module):
def __init__(self, emb_dim):
super().__init__()
self.eps = 1e-5
self.scale = nn.Parameter(torch.ones(emb_dim))
self.shift = nn.Parameter(torch.zeros(emb_dim))

def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
var = x.var(dim=-1, keepdim=True, unbiased=False)
norm_x = (x - mean) / torch.sqrt(var + self.eps)
return self.scale * norm_x + self.shift


class GELU(nn.Module):
def __init__(self):
super().__init__()

def forward(self, x):
return 0.5 * x * (1 + torch.tanh(
torch.sqrt(torch.tensor(2.0 / torch.pi)) *
(x + 0.044715 * torch.pow(x, 3))
))


class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
GELU(),
nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
nn.Dropout(cfg["drop_rate"])
)

def forward(self, x):
return self.layers(x)


class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = MultiHeadAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
block_size=cfg["ctx_len"],
num_heads=cfg["n_heads"],
dropout=cfg["drop_rate"],
qkv_bias=cfg["qkv_bias"])
self.ff = FeedForward(cfg)
self.norm1 = LayerNorm(cfg["emb_dim"])
self.norm2 = LayerNorm(cfg["emb_dim"])
self.drop_resid = nn.Dropout(cfg["drop_rate"])

def forward(self, x):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
x = self.drop_resid(x)
x = x + shortcut # Add the original input back

# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = self.drop_resid(x)
x = x + shortcut # Add the original input back

return x


class GPTModel(nn.Module):
def __init__(self, cfg):
super().__init__()
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
self.drop_emb = nn.Dropout(cfg["drop_rate"])

self.trf_blocks = nn.Sequential(
*[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])

self.final_norm = LayerNorm(cfg["emb_dim"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)

def forward(self, in_idx):
batch_size, seq_len = in_idx.shape
tok_embeds = self.tok_emb(in_idx)
pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
x = self.drop_emb(x)
x = self.trf_blocks(x)
x = self.final_norm(x)
logits = self.out_head(x)
return logits


def generate_text_simple(model, idx, max_new_tokens, context_size):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):

# Crop current context if it exceeds the supported context size
# E.g., if LLM supports only 5 tokens, and the context size is 10
# then only the last 5 tokens are used as context
idx_cond = idx[:, -context_size:]

# Get the predictions
with torch.no_grad():
logits = model(idx_cond)

# Focus only on the last time step
# (batch, n_token, vocab_size) becomes (batch, vocab_size)
logits = logits[:, -1, :]

# Get the idx of the vocab entry with the highest logits value
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)

# Append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)

return idx


#####################################
# Chapter 5
#####################################


def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text)
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
return encoded_tensor


def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0) # remove batch dimension
return tokenizer.decode(flat.tolist())


def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):

# For-loop is the same as before: Get logits, and only focus on last time step
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)
logits = logits[:, -1, :]

# New: Filter logits with top_k sampling
if top_k is not None:
# Keep only top_k values
top_logits, _ = torch.topk(logits, top_k)
min_val = top_logits[:, -1]
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)

# New: Apply temperature scaling
if temperature > 0.0:
logits = logits / temperature

# Apply softmax to get probabilities
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)

# Sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)

# Otherwise same as before: get idx of the vocab entry with the highest logits value
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)

# Same as before: append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)

return idx
Loading

0 comments on commit 9638cbb

Please sign in to comment.