Skip to content

Commit

Permalink
Add backup URL for gpt2 weights (#469)
Browse files Browse the repository at this point in the history
* Add backup URL for gpt2 weights

* newline
  • Loading branch information
rasbt authored Jan 5, 2025
1 parent 9b95557 commit 7010908
Show file tree
Hide file tree
Showing 8 changed files with 399 additions and 141 deletions.
51 changes: 33 additions & 18 deletions appendix-E/01_main-chapter-code/gpt_download.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Define paths
model_dir = os.path.join(models_dir, model_size)
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
filenames = [
"checkpoint", "encoder.json", "hparams.json",
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
Expand All @@ -33,8 +34,9 @@ def download_and_load_gpt2(model_size, models_dir):
os.makedirs(model_dir, exist_ok=True)
for filename in filenames:
file_url = os.path.join(base_url, model_size, filename)
backup_url = os.path.join(backup_base_url, model_size, filename)
file_path = os.path.join(model_dir, filename)
download_file(file_url, file_path)
download_file(file_url, file_path, backup_url)

# Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
Expand All @@ -44,11 +46,9 @@ def download_and_load_gpt2(model_size, models_dir):
return settings, params


def download_file(url, destination):
# Send a GET request to download the file

try:
with urllib.request.urlopen(url) as response:
def download_file(url, destination, backup_url=None):
def _attempt_download(download_url):
with urllib.request.urlopen(download_url) as response:
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0))

Expand All @@ -57,29 +57,44 @@ def download_file(url, destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
return True # Indicate success without re-downloading

# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte

# Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL
progress_bar_description = os.path.basename(download_url)
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True:
chunk = response.read(block_size)
if not chunk:
break
file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar
except urllib.error.HTTPError:
s = (
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
print(s)
progress_bar.update(len(chunk))
return True

try:
if _attempt_download(url):
return
except (urllib.error.HTTPError, urllib.error.URLError):
if backup_url is not None:
print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
try:
if _attempt_download(backup_url):
return
except urllib.error.HTTPError:
pass

# If we reach here, both attempts have failed
error_message = (
f"Failed to download from both primary URL ({url})"
f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
"\nCheck your internet connection or the file availability.\n"
"For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
)
print(error_message)
except Exception as e:
print(f"An unexpected error occurred: {e}")


# Alternative way using `requests`
Expand Down
51 changes: 33 additions & 18 deletions ch05/01_main-chapter-code/gpt_download.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Define paths
model_dir = os.path.join(models_dir, model_size)
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
filenames = [
"checkpoint", "encoder.json", "hparams.json",
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
Expand All @@ -33,8 +34,9 @@ def download_and_load_gpt2(model_size, models_dir):
os.makedirs(model_dir, exist_ok=True)
for filename in filenames:
file_url = os.path.join(base_url, model_size, filename)
backup_url = os.path.join(backup_base_url, model_size, filename)
file_path = os.path.join(model_dir, filename)
download_file(file_url, file_path)
download_file(file_url, file_path, backup_url)

# Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
Expand All @@ -44,11 +46,9 @@ def download_and_load_gpt2(model_size, models_dir):
return settings, params


def download_file(url, destination):
# Send a GET request to download the file

try:
with urllib.request.urlopen(url) as response:
def download_file(url, destination, backup_url=None):
def _attempt_download(download_url):
with urllib.request.urlopen(download_url) as response:
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0))

Expand All @@ -57,29 +57,44 @@ def download_file(url, destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
return True # Indicate success without re-downloading

# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte

# Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL
progress_bar_description = os.path.basename(download_url)
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True:
chunk = response.read(block_size)
if not chunk:
break
file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar
except urllib.error.HTTPError:
s = (
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
print(s)
progress_bar.update(len(chunk))
return True

try:
if _attempt_download(url):
return
except (urllib.error.HTTPError, urllib.error.URLError):
if backup_url is not None:
print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
try:
if _attempt_download(backup_url):
return
except urllib.error.HTTPError:
pass

# If we reach here, both attempts have failed
error_message = (
f"Failed to download from both primary URL ({url})"
f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
"\nCheck your internet connection or the file availability.\n"
"For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
)
print(error_message)
except Exception as e:
print(f"An unexpected error occurred: {e}")


# Alternative way using `requests`
Expand Down
69 changes: 36 additions & 33 deletions ch05/01_main-chapter-code/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,36 +63,39 @@ def check_file_size(url, expected_size):


def test_model_files():
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"

model_size = "124M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 90,
"model.ckpt.data-00000-of-00001": 497759232,
"model.ckpt.index": 5215,
"model.ckpt.meta": 471155,
"vocab.bpe": 456318
}

for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message

model_size = "355M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 91,
"model.ckpt.data-00000-of-00001": 1419292672,
"model.ckpt.index": 10399,
"model.ckpt.meta": 926519,
"vocab.bpe": 456318
}

for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message
def check_model_files(base_url):

model_size = "124M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 90,
"model.ckpt.data-00000-of-00001": 497759232,
"model.ckpt.index": 5215,
"model.ckpt.meta": 471155,
"vocab.bpe": 456318
}

for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message

model_size = "355M"
files = {
"checkpoint": 77,
"encoder.json": 1042301,
"hparams.json": 91,
"model.ckpt.data-00000-of-00001": 1419292672,
"model.ckpt.index": 10399,
"model.ckpt.meta": 926519,
"vocab.bpe": 456318
}

for file_name, expected_size in files.items():
url = f"{base_url}/{model_size}/{file_name}"
valid, message = check_file_size(url, expected_size)
assert valid, message

check_model_files(base_url="https://openaipublic.blob.core.windows.net/gpt-2/models")
check_model_files(base_url="https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2")
51 changes: 33 additions & 18 deletions ch06/01_main-chapter-code/gpt_download.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ def download_and_load_gpt2(model_size, models_dir):
# Define paths
model_dir = os.path.join(models_dir, model_size)
base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
filenames = [
"checkpoint", "encoder.json", "hparams.json",
"model.ckpt.data-00000-of-00001", "model.ckpt.index",
Expand All @@ -33,8 +34,9 @@ def download_and_load_gpt2(model_size, models_dir):
os.makedirs(model_dir, exist_ok=True)
for filename in filenames:
file_url = os.path.join(base_url, model_size, filename)
backup_url = os.path.join(backup_base_url, model_size, filename)
file_path = os.path.join(model_dir, filename)
download_file(file_url, file_path)
download_file(file_url, file_path, backup_url)

# Load settings and params
tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
Expand All @@ -44,11 +46,9 @@ def download_and_load_gpt2(model_size, models_dir):
return settings, params


def download_file(url, destination):
# Send a GET request to download the file

try:
with urllib.request.urlopen(url) as response:
def download_file(url, destination, backup_url=None):
def _attempt_download(download_url):
with urllib.request.urlopen(download_url) as response:
# Get the total file size from headers, defaulting to 0 if not present
file_size = int(response.headers.get("Content-Length", 0))

Expand All @@ -57,29 +57,44 @@ def download_file(url, destination):
file_size_local = os.path.getsize(destination)
if file_size == file_size_local:
print(f"File already exists and is up-to-date: {destination}")
return
return True # Indicate success without re-downloading

# Define the block size for reading the file
block_size = 1024 # 1 Kilobyte

# Initialize the progress bar with total file size
progress_bar_description = os.path.basename(url) # Extract filename from URL
progress_bar_description = os.path.basename(download_url)
with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
# Open the destination file in binary write mode
with open(destination, "wb") as file:
# Read the file in chunks and write to destination
while True:
chunk = response.read(block_size)
if not chunk:
break
file.write(chunk)
progress_bar.update(len(chunk)) # Update progress bar
except urllib.error.HTTPError:
s = (
f"The specified URL ({url}) is incorrect, the internet connection cannot be established,"
"\nor the requested file is temporarily unavailable.\nPlease visit the following website"
" for help: https://github.com/rasbt/LLMs-from-scratch/discussions/273")
print(s)
progress_bar.update(len(chunk))
return True

try:
if _attempt_download(url):
return
except (urllib.error.HTTPError, urllib.error.URLError):
if backup_url is not None:
print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
try:
if _attempt_download(backup_url):
return
except urllib.error.HTTPError:
pass

# If we reach here, both attempts have failed
error_message = (
f"Failed to download from both primary URL ({url})"
f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
"\nCheck your internet connection or the file availability.\n"
"For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
)
print(error_message)
except Exception as e:
print(f"An unexpected error occurred: {e}")


# Alternative way using `requests`
Expand Down
Loading

0 comments on commit 7010908

Please sign in to comment.