Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

move parameter sampling of RandomPhotometricDistort into _get_params #7442

Merged
merged 3 commits into from
Mar 22, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 22 additions & 27 deletions torchvision/transforms/v2/_color.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,19 +228,22 @@ def __init__(

def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
num_channels, *_ = query_chw(flat_inputs)
return dict(
zip(
["brightness", "contrast1", "saturation", "hue", "contrast2"],
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure why we went for "contrast1" and "contrast2" before. Since we have the additional "contrast_before" flag, it is guaranteed, that they will never be applied at the same time. Meaning, there is no point in sampling them twice.

(torch.rand(5) < self.p).tolist(),
),
contrast_before=bool(torch.rand(()) < 0.5),
channel_permutation=torch.randperm(num_channels) if torch.rand(()) < self.p else None,
)
params: Dict[str, Any] = {
key: ColorJitter._generate_value(range[0], range[1]) if torch.rand(1) < self.p else None
for key, range in [
("brightness_factor", self.brightness),
("contrast_factor", self.contrast),
("saturation_factor", self.saturation),
("hue_factor", self.hue),
]
}
params["contrast_before"] = bool(torch.rand(()) < 0.5)
params["channel_permutation"] = torch.randperm(num_channels) if torch.rand(1) < self.p else None
return params

def _permute_channels(
self, inpt: Union[datapoints._ImageType, datapoints._VideoType], permutation: torch.Tensor
) -> Union[datapoints._ImageType, datapoints._VideoType]:

orig_inpt = inpt
if isinstance(orig_inpt, PIL.Image.Image):
inpt = F.pil_to_tensor(inpt)
Expand All @@ -256,24 +259,16 @@ def _permute_channels(
def _transform(
self, inpt: Union[datapoints._ImageType, datapoints._VideoType], params: Dict[str, Any]
) -> Union[datapoints._ImageType, datapoints._VideoType]:
if params["brightness"]:
inpt = F.adjust_brightness(
inpt, brightness_factor=ColorJitter._generate_value(self.brightness[0], self.brightness[1])
)
if params["contrast1"] and params["contrast_before"]:
inpt = F.adjust_contrast(
inpt, contrast_factor=ColorJitter._generate_value(self.contrast[0], self.contrast[1])
)
if params["saturation"]:
inpt = F.adjust_saturation(
inpt, saturation_factor=ColorJitter._generate_value(self.saturation[0], self.saturation[1])
)
if params["hue"]:
inpt = F.adjust_hue(inpt, hue_factor=ColorJitter._generate_value(self.hue[0], self.hue[1]))
if params["contrast2"] and not params["contrast_before"]:
inpt = F.adjust_contrast(
inpt, contrast_factor=ColorJitter._generate_value(self.contrast[0], self.contrast[1])
)
if params["brightness_factor"] is not None:
inpt = F.adjust_brightness(inpt, brightness_factor=params["brightness_factor"])
if params["contrast_factor"] is not None and params["contrast_before"]:
inpt = F.adjust_contrast(inpt, contrast_factor=params["contrast_factor"])
if params["saturation_factor"] is not None:
inpt = F.adjust_saturation(inpt, saturation_factor=params["saturation_factor"])
if params["hue_factor"] is not None:
inpt = F.adjust_hue(inpt, hue_factor=params["hue_factor"])
if params["contrast_factor"] is not None and not params["contrast_before"]:
inpt = F.adjust_contrast(inpt, contrast_factor=params["contrast_factor"])
if params["channel_permutation"] is not None:
inpt = self._permute_channels(inpt, permutation=params["channel_permutation"])
return inpt
Expand Down