Skip to content

Commit

Permalink
[fbsync] port RandomHorizontalFlip to prototype API (#5563)
Browse files Browse the repository at this point in the history
Summary:
* refactor: port RandomHorizontalFlip to prototype API (#5523)

* refactor: merge HorizontalFlip and RandomHorizontalFlip

Add unit tests for RandomHorizontalFlip

* test: RandomHorizontalFlip with p=0

* refactor: remove type annotations from tests

* refactor: improve tests

* Update test/test_prototype_transforms.py

Reviewed By: vmoens

Differential Revision: D34878966

fbshipit-source-id: 1cd15f7dd7685a0c759e2c27b0e06a1884aeb90e

Co-authored-by: Federico Pozzi <federico.pozzi@argo.vision>
Co-authored-by: Philip Meier <github.pmeier@posteo.de>
  • Loading branch information
3 people authored and facebook-github-bot committed Mar 15, 2022
1 parent a163737 commit 9b199f1
Show file tree
Hide file tree
Showing 5 changed files with 77 additions and 4 deletions.
58 changes: 56 additions & 2 deletions test/test_prototype_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,10 @@

import pytest
import torch
from common_utils import assert_equal
from test_prototype_transforms_functional import make_images, make_bounding_boxes, make_one_hot_labels
from torchvision.prototype import transforms, features
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import to_pil_image, pil_to_tensor


def make_vanilla_tensor_images(*args, **kwargs):
Expand Down Expand Up @@ -66,10 +67,10 @@ def parametrize_from_transforms(*transforms):
class TestSmoke:
@parametrize_from_transforms(
transforms.RandomErasing(p=1.0),
transforms.HorizontalFlip(),
transforms.Resize([16, 16]),
transforms.CenterCrop([16, 16]),
transforms.ConvertImageDtype(),
transforms.RandomHorizontalFlip(),
)
def test_common(self, transform, input):
transform(input)
Expand Down Expand Up @@ -188,3 +189,56 @@ def test_random_resized_crop(self, transform, input):
)
def test_convert_image_color_space(self, transform, input):
transform(input)


@pytest.mark.parametrize("p", [0.0, 1.0])
class TestRandomHorizontalFlip:
def input_expected_image_tensor(self, p, dtype=torch.float32):
input = torch.tensor([[[0, 1], [0, 1]], [[1, 0], [1, 0]]], dtype=dtype)
expected = torch.tensor([[[1, 0], [1, 0]], [[0, 1], [0, 1]]], dtype=dtype)

return input, expected if p == 1 else input

def test_simple_tensor(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(input)

assert_equal(expected, actual)

def test_pil_image(self, p):
input, expected = self.input_expected_image_tensor(p, dtype=torch.uint8)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(to_pil_image(input))

assert_equal(expected, pil_to_tensor(actual))

def test_features_image(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(features.Image(input))

assert_equal(features.Image(expected), actual)

def test_features_segmentation_mask(self, p):
input, expected = self.input_expected_image_tensor(p)
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(features.SegmentationMask(input))

assert_equal(features.SegmentationMask(expected), actual)

def test_features_bounding_box(self, p):
input = features.BoundingBox([0, 0, 5, 5], format=features.BoundingBoxFormat.XYXY, image_size=(10, 10))
transform = transforms.RandomHorizontalFlip(p=p)

actual = transform(input)

expected_image_tensor = torch.tensor([5, 0, 10, 5]) if p == 1.0 else input
expected = features.BoundingBox.new_like(input, data=expected_image_tensor)
assert_equal(expected, actual)
assert actual.format == expected.format
assert actual.image_size == expected.image_size
2 changes: 1 addition & 1 deletion torchvision/prototype/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@
from ._auto_augment import RandAugment, TrivialAugmentWide, AutoAugment, AugMix
from ._container import Compose, RandomApply, RandomChoice, RandomOrder
from ._geometry import (
HorizontalFlip,
Resize,
CenterCrop,
RandomResizedCrop,
FiveCrop,
TenCrop,
BatchMultiCrop,
RandomHorizontalFlip,
RandomZoomOut,
)
from ._meta import ConvertBoundingBoxFormat, ConvertImageDtype, ConvertImageColorSpace
Expand Down
16 changes: 15 additions & 1 deletion torchvision/prototype/transforms/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,25 @@
from ._utils import query_image, get_image_dimensions, has_any, is_simple_tensor


class HorizontalFlip(Transform):
class RandomHorizontalFlip(Transform):
def __init__(self, p: float = 0.5) -> None:
super().__init__()
self.p = p

def forward(self, *inputs: Any) -> Any:
sample = inputs if len(inputs) > 1 else inputs[0]
if torch.rand(1) >= self.p:
return sample

return super().forward(sample)

def _transform(self, input: Any, params: Dict[str, Any]) -> Any:
if isinstance(input, features.Image):
output = F.horizontal_flip_image_tensor(input)
return features.Image.new_like(input, output)
elif isinstance(input, features.SegmentationMask):
output = F.horizontal_flip_segmentation_mask(input)
return features.SegmentationMask.new_like(input, output)
elif isinstance(input, features.BoundingBox):
output = F.horizontal_flip_bounding_box(input, format=input.format, image_size=input.image_size)
return features.BoundingBox.new_like(input, output)
Expand Down
1 change: 1 addition & 0 deletions torchvision/prototype/transforms/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@
horizontal_flip_bounding_box,
horizontal_flip_image_tensor,
horizontal_flip_image_pil,
horizontal_flip_segmentation_mask,
resize_bounding_box,
resize_image_tensor,
resize_image_pil,
Expand Down
4 changes: 4 additions & 0 deletions torchvision/prototype/transforms/functional/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@
horizontal_flip_image_pil = _FP.hflip


def horizontal_flip_segmentation_mask(segmentation_mask: torch.Tensor) -> torch.Tensor:
return horizontal_flip_image_tensor(segmentation_mask)


def horizontal_flip_bounding_box(
bounding_box: torch.Tensor, format: features.BoundingBoxFormat, image_size: Tuple[int, int]
) -> torch.Tensor:
Expand Down

0 comments on commit 9b199f1

Please sign in to comment.