Skip to content

Commit

Permalink
float8nocompile: add e2e fsdp test
Browse files Browse the repository at this point in the history
ghstack-source-id: 5baf685343844750b542f98880ef3b8174141ec6
ghstack-comment-id: 2576459235
Pull Request resolved: #1523
  • Loading branch information
danielvegamyhre committed Jan 8, 2025
1 parent 158e854 commit 6903723
Show file tree
Hide file tree
Showing 2 changed files with 97 additions and 3 deletions.
3 changes: 0 additions & 3 deletions torchao/prototype/float8nocompile/.gitignore

This file was deleted.

97 changes: 97 additions & 0 deletions torchao/prototype/float8nocompile/test/fsdp_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
######################################################################
#
# To run these unit tests, use the following command:
#
# torchrun --nproc_per_node=${NUM_GPUS} -m pytest test/fsdp_test.py
#
#######################################################################
import os

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

from torchao.float8.float8_linear_utils import convert_to_float8_training
from torchao.prototype.float8nocompile.float8nocompile_linear_utils import (
convert_to_float8_nocompile_training,
)
from torchao.utils import TORCH_VERSION_AT_LEAST_2_5

if not TORCH_VERSION_AT_LEAST_2_5:
raise AssertionError("torchao.float8 requires PyTorch version 2.5 or greater")


class TestModel(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(2048, 4096, bias=False),
nn.Linear(4096, 16, bias=False),
)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.layers(x)


def setup_distributed():
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)


@pytest.fixture
def model1():
torch.manual_seed(0)
return TestModel()


@pytest.fixture
def model2():
torch.manual_seed(0)
return TestModel()


def test_model_weights_and_gradients(model1, model2):
assert torch.cuda.is_available()
device = torch.device("cuda")

setup_distributed()

model1 = model1.to(torch.bfloat16).to(device)
model2 = model2.to(torch.bfloat16).to(device)

# compare production float8 linear conversion with no-compile version
convert_to_float8_training(model2)
convert_to_float8_nocompile_training(model1)

# distributed training with FSDP
model1 = FSDP(model1)
model2 = FSDP(model2)

input_tensor = torch.randn(
16, 2048, requires_grad=True, dtype=torch.bfloat16, device=device
)
input_copy1 = input_tensor.clone().detach().requires_grad_(True)
input_copy2 = input_tensor.clone().detach().requires_grad_(True)

loss_fn = nn.MSELoss()

output1 = model1(input_copy1)
output2 = model2(input_copy2)

loss1 = loss_fn(output1, torch.zeros_like(output1))
loss2 = loss_fn(output2, torch.zeros_like(output2))

loss1.backward()
loss2.backward()

dist.destroy_process_group()

# compare the outputs, weight gradients, and input gradients
assert torch.allclose(output1, output2, atol=0, rtol=0)
assert torch.allclose(input_copy1.grad, input_copy2.grad, atol=0, rtol=0)
for param1, param2 in zip(model1.parameters(), model2.parameters()):
assert torch.allclose(param1.grad, param2.grad, atol=0, rtol=0)

0 comments on commit 6903723

Please sign in to comment.