-
Notifications
You must be signed in to change notification settings - Fork 359
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Added tensor_parallelism examples #3047
Conversation
8314dcc
to
06151a1
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-07-30 18:59:39.314909+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-07-30 19:07:41.231563+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 20:24:04.383629+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 20:25:40.820373+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_llama3.py 2024-08-05 20:24:04.383629+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_llama3.py 2024-08-05 20:25:40.827300+00:00
@@ -2,11 +2,13 @@
import torch_tensorrt
from llama3_model import Transformer, ModelArgs
from torch.distributed._composable.fsdp import MixedPrecisionPolicy
from torch.distributed._composable.fsdp.fully_shard import fully_shard
from torch.distributed._tensor import Replicate, Shard
-from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import checkpoint_wrapper
+from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
+ checkpoint_wrapper,
+)
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor.parallel import (
ColwiseParallel,
PrepareModuleInput,
RowwiseParallel,
@@ -14,10 +16,11 @@
parallelize_module,
)
import time
from torch.distributed.device_mesh import init_device_mesh
import os
+
# Taken and modified pytorch lightening
# https://lightning.ai/lightning-ai/studios/tensor-parallelism-supercharging-large-model-training-with-pytorch-lightning
def parallelize(model: Transformer, tp_mesh: DeviceMesh) -> Transformer:
"""Apply parallelisms and activation checkpointing to the model.
@@ -32,12 +35,14 @@
# 2. Parallelize the root norm layer over the sequence dim
# 3. Shard the first transformer block's inputs
# Parallelize the first embedding and the last linear out projection
plan = {
- "tok_embeddings": RowwiseParallel(input_layouts=Replicate(),
- output_layouts=Shard(1),),
+ "tok_embeddings": RowwiseParallel(
+ input_layouts=Replicate(),
+ output_layouts=Shard(1),
+ ),
"output": ColwiseParallel(
input_layouts=Shard(1),
),
"norm": SequenceParallel(),
}
@@ -83,11 +88,18 @@
_world_size = int(os.environ["WORLD_SIZE"])
tp_mesh = init_device_mesh(device_type="cuda", mesh_shape=(_world_size,))
-model_args = ModelArgs(vocab_size=128256, dim=8192, n_layers=80, n_heads=64, rope_theta=500000.0, n_kv_heads=8)
+model_args = ModelArgs(
+ vocab_size=128256,
+ dim=8192,
+ n_layers=80,
+ n_heads=64,
+ rope_theta=500000.0,
+ n_kv_heads=8,
+)
# model_args = ModelArgs(vocab_size=32000, dim=2048, n_layers=8, n_heads=32)
model = Transformer(model_args).to("cuda")
model = parallelize(model, tp_mesh)
model.eval()
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/llama3_model.py 2024-08-05 20:24:04.383629+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/llama3_model.py 2024-08-05 20:25:40.985216+00:00
@@ -166,18 +166,26 @@
"""
def __init__(self, model_args: ModelArgs):
super().__init__()
self.n_heads = model_args.n_heads
- self.n_kv_heads = model_args.n_heads if model_args.n_kv_heads is None else model_args.n_kv_heads
+ self.n_kv_heads = (
+ model_args.n_heads
+ if model_args.n_kv_heads is None
+ else model_args.n_kv_heads
+ )
self.n_rep = self.n_heads // self.n_kv_heads
self.head_dim = model_args.dim // model_args.n_heads
- self.wq = nn.Linear(model_args.dim, model_args.n_heads * self.head_dim, bias=False)
+ self.wq = nn.Linear(
+ model_args.dim, model_args.n_heads * self.head_dim, bias=False
+ )
self.wk = nn.Linear(model_args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(model_args.dim, self.n_kv_heads * self.head_dim, bias=False)
- self.wo = nn.Linear(model_args.n_heads * self.head_dim, model_args.dim, bias=False)
+ self.wo = nn.Linear(
+ model_args.n_heads * self.head_dim, model_args.dim, bias=False
+ )
def init_weights(self, init_std: float):
for linear in (self.wq, self.wk, self.wv):
nn.init.trunc_normal_(linear.weight, mean=0.0, std=0.02)
nn.init.trunc_normal_(self.wo.weight, mean=0.0, std=init_std)
@@ -214,11 +222,13 @@
xk = keys.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xv = values.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
# we use casual mask for training
output = F.scaled_dot_product_attention(xq, xk, xv, is_causal=True)
- output = output.transpose(1, 2).contiguous() # (bs, seqlen, n_local_heads, head_dim)
+ output = output.transpose(
+ 1, 2
+ ).contiguous() # (bs, seqlen, n_local_heads, head_dim)
output = output.view(bs, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
@@ -445,6 +455,6 @@
Returns:
Transformer: Transformer model.
"""
- return cls(model_args)
\ No newline at end of file
+ return cls(model_args)
2a9435c
to
22c9c54
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 23:53:07.924207+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 23:54:49.457335+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 23:54:08.089203+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-05 23:55:48.759331+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
@cehongwang can you lint so we can just merge these in? |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_llama3.py 2024-08-20 22:53:14.793295+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_llama3.py 2024-08-20 22:55:07.454019+00:00
@@ -13,10 +13,11 @@
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
# Taken and modified pytorch lightening
# https://lightning.ai/lightning-ai/studios/tensor-parallelism-supercharging-large-model-training-with-pytorch-lightning
import logging
+
_rank = int(os.environ["RANK"])
_world_size = int(os.environ["WORLD_SIZE"])
tp_size = 2
logger = logging.getLogger()
@@ -54,11 +55,11 @@
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
"workspace_size": 1 << 33,
"debug": False,
- "timing_cache_path":"/opt/file/cache/timing_cache_llama.bin"
+ "timing_cache_path": "/opt/file/cache/timing_cache_llama.bin",
},
dynamic=False,
)
for i in range(15):
# seeding with dp_rank to ensure identical inputs for TP groups
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-20 22:53:14.793295+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-20 22:55:07.477068+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
--- /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_compiler.py 2024-08-20 22:53:14.805295+00:00
+++ /home/runner/work/TensorRT/TensorRT/py/torch_tensorrt/dynamo/_compiler.py 2024-08-20 22:55:08.153113+00:00
@@ -361,24 +361,27 @@
# Store TRT replicas of Torch subgraphs
trt_modules = {}
# Iterate over all components that can be accelerated
# Generate the corresponding TRT Module for those
logger.info(f"-" * 100)
- logger.info(f"There are {len(list(partitioned_module.named_children()))} submodules in total.")
+ logger.info(
+ f"There are {len(list(partitioned_module.named_children()))} submodules in total."
+ )
i = 0
import os
+
for name, _ in partitioned_module.named_children():
# Benchmark log utilities
i += 1
logger.info(f"-" * 100)
logger.info(f"Start compiling {i}th submodule")
total = torch.cuda.get_device_properties(0).total_memory
submodule = getattr(partitioned_module, name)
# Criteria for a module to be convertible to TRT
if settings.use_fast_partitioner and "_run_on_acc" not in name:
- # if (settings.use_fast_partitioner and "_run_on_acc" not in name) or int(os.environ["RANK"]) == 1:
+ # if (settings.use_fast_partitioner and "_run_on_acc" not in name) or int(os.environ["RANK"]) == 1:
dryrun_tracker.to_run_in_torch.extend(parse_non_trt_nodes(submodule))
continue
subgraph_data = PerSubgraphData()
subgraph_data.subgraph_name = name
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to Python style guidelines:
--- /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-22 21:42:59.714106+00:00
+++ /home/runner/work/TensorRT/TensorRT/examples/distributed_inference/tensor_parallel_simple_example.py 2024-08-22 21:44:38.881398+00:00
@@ -75,11 +75,11 @@
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
- "min_block_size": 1
+ "min_block_size": 1,
},
dynamic=False,
)
for i in range(10):
6b74b00
to
def25b8
Compare
def25b8
to
e47440d
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
Description
Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.
Fixes # (issue)
Type of change
Please delete options that are not relevant and/or add your own.
Checklist: