Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore: dynamic shape support for flip ops #3046

Merged
merged 2 commits into from
Jul 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -3259,7 +3259,7 @@ def aten_ops_pdist(
)


@dynamo_tensorrt_converter(torch.ops.aten.flip.default)
@dynamo_tensorrt_converter(torch.ops.aten.flip.default, supports_dynamic_shapes=True)
@enforce_tensor_types(
{
0: (TRTTensor,),
Expand Down
33 changes: 30 additions & 3 deletions py/torch_tensorrt/dynamo/conversion/impl/slice/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -446,24 +446,51 @@ def flip(
output_shape = list(input.shape)
stride_slice = []

dynamic_shape = has_dynamic_shape(input.shape)

shape = input.shape
rank = len(shape)
dims = get_positive_dim(dims, rank)

for i in range(rank):
if i in dims:
start_slice.append(shape[i] - 1)
if shape[i] == DYNAMIC_DIM:
dim = get_shape(
ctx, target, source_ir, f"{name}_shape_dim_{i}", input, i
)
last_element_index = impl.elementwise.sub(
ctx, target, source_ir, f"{name}_sub_{i}", dim, 1
)
start_slice.append(last_element_index)
else:
start_slice.append(shape[i] - 1)
stride_slice.append(-1)
else:
start_slice.append(0)
stride_slice.append(1)

layer = ctx.net.add_slice(
input,
start=start_slice,
shape=output_shape,
start=[] if dynamic_shape else start_slice,
shape=[] if dynamic_shape else output_shape,
stride=stride_slice,
)
if dynamic_shape:
output_shape = get_shape_with_dynamic_shape(
ctx, target, source_ir, f"{name}_shape", output_shape, input
)

start_slice_tensor = cat(
ctx,
target,
source_ir,
f"{name}_start_slice_concat",
start_slice,
0,
)
layer.set_input(1, start_slice_tensor)
layer.set_input(2, output_shape)

set_layer_name(layer, target, name, source_ir)
return layer.get_output(0)

Expand Down
53 changes: 53 additions & 0 deletions tests/py/dynamo/conversion/test_flip_aten.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import torch.nn as nn
from parameterized import parameterized
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt import Input

from .harness import DispatchTestCase

Expand Down Expand Up @@ -33,5 +34,57 @@ def forward(self, x):
self.run_test(Flip(), inputs)


class TestFlipConverterDynamic(DispatchTestCase):
@parameterized.expand(
[
(
"3d_dynamic",
(2, 1, 1),
(2, 2, 1),
(3, 2, 4),
[2, 1, 0],
),
(
"3d_dynamic_negative_dim",
(2, 1, 1),
(2, 2, 1),
(3, 2, 4),
[-1, 1],
),
(
"4d_dynamic_static_dim",
(3, 1, 1, 1),
(3, 2, 1, 2),
(3, 2, 4, 5),
[0, 2, 3],
),
(
"3d_dynamic_no_dim",
(2, 1, 1),
(2, 2, 1),
(3, 2, 4),
[],
),
]
)
def test_flip_dynamic(self, _, min_shape, opt_shape, max_shape, dims):
class Flip(nn.Module):
def forward(self, x):
return torch.ops.aten.flip.default(x, dims)

input_specs = [
Input(
min_shape=min_shape,
opt_shape=opt_shape,
max_shape=max_shape,
dtype=torch.float,
),
]
self.run_test_with_dynamic_shape(
Flip(),
input_specs,
)


if __name__ == "__main__":
run_tests()
Loading