-
Notifications
You must be signed in to change notification settings - Fork 359
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
empty_permute decomposition #2698
Conversation
dcfe61d
to
6abe7ce
Compare
fx_graph = torch.fx.symbolic_trace(emptyLike()) | ||
unexpected_ops_seen, expected_ops_unseen = lower_graph_testing( | ||
fx_graph, | ||
inputs, | ||
expected_ops=expected_ops, | ||
unexpected_ops=unexpected_ops, | ||
min_block_size=1, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could you show a printout of what the original and final graphs look like in this case? I want to verify that there is not a circular issue where empty_permuted
generates empty_like
, and vice versa
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
With the empty_permute
decomposition the graph is this
Pre-AOT Autograd graph:=============
graph():
%l_x_ : torch.Tensor [num_users=1] = placeholder[target=L_x_]
%add : [num_users=2] = call_function[target=torch.ops.aten.add](args = (%l_x_, %l_x_), kwargs = {})
%empty_like_default : [num_users=1] = call_function[target=torch.ops.aten.empty_like.default](args = (%add,), kwargs = {})
%add_1 : [num_users=1] = call_function[target=operator.add](args = (%empty_like_default, %add), kwargs = {})
return (add_1,)
Post-AOT Autograd graph:=======
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%arg0_1,), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clone, %clone), kwargs = {})
%empty : [num_users=1] = call_function[target=torch.ops.aten.empty.memory_format](args = ([3, 2],), kwargs = {dtype: torch.float32,
layout: torch.strided, device: cuda:0, pin_memory: False})
%permute : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%empty, [0, 1]), kwargs = {})
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute, %add), kwargs = {})
return (add_1,)
Graph after constant folding:
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
%_frozen_param0 : [num_users=1] = get_attr[target=_frozen_param0]
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_frozen_param0, %add), kwargs = {})
return (add_1,)
Post-lowering passes Autograd graph:=======
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
%_frozen_param0 : [num_users=1] = get_attr[target=_frozen_param0]
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_frozen_param0, %add), kwargs = {})
return (add_1,)
Without the decomposition, the graph is
Pre-AOT Autograd graph:=============
graph():
%l_x_ : torch.Tensor [num_users=1] = placeholder[target=L_x_]
%add : [num_users=2] = call_function[target=torch.ops.aten.add](args = (%l_x_, %l_x_), kwargs = {})
%empty_like_default : [num_users=1] = call_function[target=torch.ops.aten.empty_like.default](args = (%add,), kwargs = {})
%add_1 : [num_users=1] = call_function[target=operator.add](args = (%empty_like_default, %add), kwargs = {})
return (add_1,)
Post-AOT Autograd graph:=======
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%arg0_1,), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clone, %clone), kwargs = {})
%empty_permuted : [num_users=1] = call_function[target=torch.ops.aten.empty_permuted.default](args = ([3, 2], [0, 1]), kwargs = {dt
ype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%empty_permuted, %add), kwargs = {})
return (add_1,)
Graph after constant folding:
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
%_frozen_param0 : [num_users=1] = get_attr[target=_frozen_param0]
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_frozen_param0, %add), kwargs = {})
return (add_1,)
Post-lowering passes Autograd graph:=======
graph():
%arg0_1 : [num_users=1] = placeholder[target=arg0_1]
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
%_frozen_param0 : [num_users=1] = get_attr[target=_frozen_param0]
%add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_frozen_param0, %add), kwargs = {})
return (add_1,)
So empty_like
decomposes into empty_permute
which decomposes into empty.memory_format
. The above test does not give error, even though empty.memory_format
is not supported since constant folding removes the op.
I am working on empty.memory_format in PR #2745
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In the above example, the Pre-AOT graph shows:
%empty_like_default : [num_users=1] = call_function[target=torch.ops.aten.empty_like.default](args = (%add,), kwargs = {})
Since there is only one argument in args
, what is empty_permute = args[1]
defined as in the decomposition for that case?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In the above case with the AOT decomposition, the above operation decomposes to
%empty_permuted : [num_users=1] = call_function[target=torch.ops.aten.empty_permuted.default](args = ([3, 2], [0, 1]), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
The args[1] in this case is[0,1]
since it keeps the shapes in the original form.
Not sure how it gets the [0,1] exact, but I assume it must be the internal AOT lowering heuristics?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Overall looks good to me - added one clarifying question
fx_graph = torch.fx.symbolic_trace(emptyLike()) | ||
unexpected_ops_seen, expected_ops_unseen = lower_graph_testing( | ||
fx_graph, | ||
inputs, | ||
expected_ops=expected_ops, | ||
unexpected_ops=unexpected_ops, | ||
min_block_size=1, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In the above example, the Pre-AOT graph shows:
%empty_like_default : [num_users=1] = call_function[target=torch.ops.aten.empty_like.default](args = (%add,), kwargs = {})
Since there is only one argument in args
, what is empty_permute = args[1]
defined as in the decomposition for that case?
This is an extension to support aten::empty_like.