Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reorg for converters in hardtanh(FX Converter Refactor [5/N]) <Target: converter_reorg_proto> #1901

Merged
merged 1 commit into from
May 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 4 additions & 12 deletions py/torch_tensorrt/fx/converters/acc_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -3585,23 +3585,15 @@ def acc_ops_hardtanh(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]

if not isinstance(input_val, TRTTensor):
raise RuntimeError(
f"hardtanh received input {input_val} that is not part "
"of the TensorRT region!"
)

return activation.convert_activation(
return activation.hardtanh(
network,
target,
SourceIR.ACC,
name,
trt.ActivationType.CLIP,
input_val,
alpha=kwargs["min_val"],
beta=kwargs["max_val"],
kwargs["input"],
kwargs["min_val"],
kwargs["max_val"],
)


Expand Down
14 changes: 14 additions & 0 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,6 +201,20 @@ def aten_ops_fmod(
return acc_ops_converters.acc_ops_fmod(network, target, None, kwargs_new, name)


@tensorrt_converter(torch.ops.aten.hardtanh.default)
def aten_ops_hardtanh(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:

return activation.hardtanh(
network, target, SourceIR.ATEN, name, args[0], args[1], args[2]
)


@tensorrt_converter(torch.ops.aten.linear)
def aten_ops_linear(
network: TRTNetwork,
Expand Down
31 changes: 31 additions & 0 deletions py/torch_tensorrt/fx/converters/impl/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,37 @@ def convert_activation(
return layer.get_output(0)


def hardtanh(
network: TRTNetwork,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input_val: TRTTensor,
alpha: Optional[Any] = None,
beta: Optional[Any] = None,
):
operation_type = trt.ActivationType.CLIP

def hardtanh_dyn_range_fn(dyn_range):
def hardtanh_fn(x):
# TODO: Called torch.nn.functional.hardtanh
return torch.nn.functional.hardtanh(x)

return hardtanh_dyn_range_fn(dyn_range[0]), hardtanh_dyn_range_fn(dyn_range[1])

return convert_activation(
network,
target,
source_ir,
name,
operation_type,
input_val,
alpha,
beta,
dyn_range_fn=hardtanh_dyn_range_fn,
)


def relu(
network: TRTNetwork,
target: Target,
Expand Down
15 changes: 15 additions & 0 deletions py/torch_tensorrt/fx/converters/nn_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,18 @@ def sigmoid(network, submod, args, kwargs, layer_name):
name=layer_name,
input_val=kwargs["input"],
)


@tensorrt_converter(torch.nn.functional.hardtanh)
@tensorrt_converter(torch.nn.modules.activation.Hardtanh)
def hardtanh(network, submod, args, kwargs, layer_name):
# args/kwargs should have already been normalized to kwargs
assert len(args) == 0

return activation.hardtanh(
network=network,
target="torch.nn.modules.activation.Hardtanh",
source_ir=SourceIR.NN,
name=layer_name,
input_val=kwargs["input"],
)
53 changes: 53 additions & 0 deletions py/torch_tensorrt/fx/test/converters/aten_op/test_hardtanh_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
import torch
import torch.nn as nn
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt.fx.tools.common_fx2trt import DispatchTestCase, InputTensorSpec


class TestHardTanHConverter(DispatchTestCase):
def test_hardtanh(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.hardtanh(x)

inputs = [torch.randn(1, 10)]
self.run_test(
TestModule(), inputs, expected_ops={torch.ops.aten.hardtanh.default}
)

def test_hardtanh_with_dynamic_shape(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.hardtanh(x)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1), (1, 2, 3), (3, 3, 3))],
),
]
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.hardtanh.default}
)

def test_hardtanh_with_dynamic_shape_four_dimensions(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.hardtanh(x)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1, 5), (1, 2, 3, 5), (3, 3, 3, 5))],
),
]

self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.hardtanh.default}
)


if __name__ == "__main__":
run_tests()