Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: Centralizing sigmoid implementation (FX Converter Refactor [2/N]) <Target: converter_reorg_proto> #1868

Merged
merged 2 commits into from
May 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion py/torch_tensorrt/fx/converters/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
import tensorrt as trt

if hasattr(trt, "__version__"):
from .activation import * # noqa: F401 F403
from .adaptive_avgpool import * # noqa: F401 F403
from .add import * # noqa: F401 F403
from .batchnorm import * # noqa: F401 F403
Expand Down
12 changes: 2 additions & 10 deletions py/torch_tensorrt/fx/converters/acc_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -3195,21 +3195,13 @@ def acc_ops_sigmoid(
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:
input_val = kwargs["input"]

if not isinstance(input_val, TRTTensor):
raise RuntimeError(
f"Sigmoid received input {input_val} that is not part "
"of the TensorRT region!"
)
narendasan marked this conversation as resolved.
Show resolved Hide resolved

return activation.convert_activation(
return activation.sigmoid(
network,
target,
SourceIR.ACC,
name,
trt.ActivationType.SIGMOID,
input_val,
kwargs["input"],
)


Expand Down
37 changes: 0 additions & 37 deletions py/torch_tensorrt/fx/converters/activation.py

This file was deleted.

18 changes: 18 additions & 0 deletions py/torch_tensorrt/fx/converters/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -484,3 +484,21 @@ def aten_ops_sym_size(
)
set_layer_name(slice_layer, target, "_slice_layer")
return slice_layer.get_output(0)


@tensorrt_converter(torch.ops.aten.sigmoid.default)
def aten_ops_sigmoid(
network: TRTNetwork,
target: Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
name: str,
) -> Union[TRTTensor, Sequence[TRTTensor]]:

return activation.sigmoid(
network,
target,
SourceIR.ATEN,
name,
args[0],
)
27 changes: 27 additions & 0 deletions py/torch_tensorrt/fx/converters/impl/activation.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,3 +90,30 @@ def relu_dyn_range_fn(dyn_range):
input_val,
dyn_range_fn=relu_dyn_range_fn,
)


def sigmoid(
network: TRTNetwork,
target: Target,
source_ir: Optional[SourceIR],
name: str,
input_val: TRTTensor,
):
operation_type = trt.ActivationType.SIGMOID

def sigmoid_dyn_range_fn(dyn_range):
def sigmoid_fn(x):
# TODO: Can this just call torch.nn.functional.sigmoid?
return 1 / (1 + np.exp(-x))

return sigmoid_fn(dyn_range[0]), sigmoid_fn(dyn_range[1])

return convert_activation(
network,
target,
source_ir,
name,
operation_type,
input_val,
dyn_range_fn=sigmoid_dyn_range_fn,
)
14 changes: 14 additions & 0 deletions py/torch_tensorrt/fx/converters/nn_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,3 +22,17 @@ def relu(network, submod, args, kwargs, layer_name):
name=layer_name,
input_val=kwargs["input"],
)


@tensorrt_converter(torch.nn.modules.activation.Sigmoid)
def sigmoid(network, submod, args, kwargs, layer_name):
# args/kwargs should have already been normalized to kwargs
assert len(args) == 0

activation.sigmoid(
network=network,
target="torch.nn.modules.activation.Sigmoid",
source_ir=SourceIR.NN,
name=layer_name,
input_val=kwargs["input"],
)
67 changes: 67 additions & 0 deletions py/torch_tensorrt/fx/test/converters/aten_op/test_sigmoid_aten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import torch
import torch.nn as nn
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt.fx.utils import LowerPrecision
from torch_tensorrt.fx.tools.common_fx2trt import DispatchTestCase, InputTensorSpec


class TestSigmoidConverter(DispatchTestCase):
def test_sigmoid(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.sigmoid(x)

inputs = [torch.randn(1, 10)]
self.run_test(
TestModule(), inputs, expected_ops={torch.ops.aten.sigmoid.default}
)

def test_sigmoid_with_dynamic_shape(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.sigmoid(x)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1), (1, 2, 3), (3, 3, 3))],
),
]
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.sigmoid.default}
)

def test_sigmoid_with_dynamic_shape_four_dimensions(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.sigmoid(x)

input_specs = [
InputTensorSpec(
shape=(-1, -1, -1, -1),
dtype=torch.float32,
shape_ranges=[((1, 1, 1, 5), (1, 2, 3, 5), (3, 3, 3, 5))],
),
]

narendasan marked this conversation as resolved.
Show resolved Hide resolved
self.run_test_with_dynamic_shape(
TestModule(), input_specs, expected_ops={torch.ops.aten.sigmoid.default}
)

def test_sigmoid_fp16(self):
class TestModule(nn.Module):
def forward(self, x):
return nn.functional.sigmoid(x)

inputs = [torch.randn(1, 10)]
self.run_test(
TestModule(),
inputs,
expected_ops={torch.ops.aten.sigmoid.default},
precision=torch.half,
)


if __name__ == "__main__":
run_tests()