Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Einsum converter #1385

Merged
merged 7 commits into from
Oct 5, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions core/conversion/converters/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ cc_library(
"impl/constant_pad.cpp",
"impl/conv_deconv.cpp",
"impl/cumsum.cpp",
"impl/einsum.cpp",
"impl/element_wise.cpp",
"impl/expand.cpp",
"impl/interpolate.cpp",
Expand Down
59 changes: 59 additions & 0 deletions core/conversion/converters/impl/einsum.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
#include "core/conversion/converters/converters.h"
#include "core/conversion/tensorcontainer/TensorContainer.h"
#include "core/util/prelude.h"

#include <vector>

namespace torch_tensorrt {
namespace core {
namespace conversion {
namespace converters {
namespace impl {
namespace {

auto stack_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

probably should be einsum_registrations

{"aten::einsum(str equation, Tensor[] tensors) -> (Tensor)",
[](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
// Extract equation and list of tensors
auto equation = args[0].unwrapToString();
auto in = args[1].IValue()->toListRef();

std::vector<nvinfer1::ITensor*> tensors;

// Populate vector of ITensor pointers
for (auto t : in) {
nvinfer1::ITensor* itensor;

// Tensor is either an ITensor (wrapped) or PyTorch Tensor
if (t.isTensor()) {
auto weight = Weights(ctx, t.toTensor());

auto const_layer = ctx->net->addConstant(weight.shape, weight.data);
TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);

itensor = const_layer->getOutput(0);
} else {
auto cont = t.toCustomClass<TensorContainer>();
itensor = cont->tensor();
}

tensors.push_back(itensor);
}

// Add Tensor-RT Einsum layer
auto einsum_layer = ctx->net->addEinsum(tensors.data(), tensors.size(), equation.c_str());
TORCHTRT_CHECK(einsum_layer, "Unable to create einsum layer from node: " << *n);

einsum_layer->setName(util::node_info(n).c_str());
auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], einsum_layer->getOutput(0));

LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
return true;
}});

} // namespace
} // namespace impl
} // namespace converters
} // namespace conversion
} // namespace core
} // namespace torch_tensorrt
5 changes: 5 additions & 0 deletions tests/core/conversion/converters/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,10 @@ converter_test(
name = "test_cumsum",
)

converter_test(
name = "test_einsum",
)

converter_test(
name = "test_element_wise",
)
Expand Down Expand Up @@ -152,6 +156,7 @@ test_suite(
":test_conv_deconv",
":test_copy",
":test_cumsum",
":test_einsum",
":test_element_wise",
":test_expand",
":test_instance_norm",
Expand Down
104 changes: 104 additions & 0 deletions tests/core/conversion/converters/test_einsum.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#include <string>
#include "core/compiler.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"

TEST(Converters, ATenEinsumConvertsMatMulCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor, %x.2 : Tensor):
%0 : str = prim::Constant[value="ij,jk->ik"]()
%3 : Tensor[] = prim::ListConstruct(%x.1, %x.2)
%4 : Tensor = aten::einsum(%0, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Test matrix multiplication via einsum
auto in_0 = at::rand({12, 17}, {at::kCUDA});
auto in_1 = at::rand({17, 35}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenEinsumConvertsElementwiseProdCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor, %x.2 : Tensor):
%0 : str = prim::Constant[value="abcd,abcd->abcd"]()
%3 : Tensor[] = prim::ListConstruct(%x.1, %x.2)
%4 : Tensor = aten::einsum(%0, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Test elementwise tensor product via einsum
auto in_0 = at::rand({7, 5, 2, 8}, {at::kCUDA});
auto in_1 = at::rand({7, 5, 2, 8}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenEinsumConvertsTransposeCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor):
%0 : str = prim::Constant[value="jk->kj"]()
%3 : Tensor[] = prim::ListConstruct(%x.1)
%4 : Tensor = aten::einsum(%0, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Test single-matrix transpose via einsum
auto in_0 = at::rand({25, 28}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}

TEST(Converters, ATenEinsumConvertsVectorsCorrectly) {
const auto graph = R"IR(
graph(%x.1 : Tensor, %x.2 : Tensor):
%0 : str = prim::Constant[value="a,b->ab"]()
%3 : Tensor[] = prim::ListConstruct(%x.1, %x.2)
%4 : Tensor = aten::einsum(%0, %3)
return (%4))IR";

auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());

// Test vector outer product via einsum
auto in_0 = at::rand({25}, {at::kCUDA});
auto in_1 = at::rand({4}, {at::kCUDA});

auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in_0, in_1});

params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
auto trt_results = torch_tensorrt::tests::util::RunGraphEngine(g, params, {in_0, in_1});

ASSERT_TRUE(
torch_tensorrt::tests::util::almostEqual(jit_results[0], trt_results[0].reshape_as(jit_results[0]), 2e-6));
}