-
Notifications
You must be signed in to change notification settings - Fork 359
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
added qat-ptq workflow notebook #1239
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to C++ style guidelines:
diff --git a/workspace/core/conversion/evaluators/aten.cpp b/tmp/changes.txt
index 4d8795f..c8c2c00 100644
--- a/workspace/core/conversion/evaluators/aten.cpp
+++ b/tmp/changes.txt
@@ -184,7 +184,7 @@ auto aten_registrations TORCHTRT_UNUSED =
int64_t start = 0;
auto startIVal = args.at(n->input(1)).IValue();
- if(!startIVal->isNone()){
+ if (!startIVal->isNone()) {
start = args.at(n->input(1)).unwrapToInt();
}
int64_t end = args.at(n->input(2)).unwrapToInt();
diff --git a/workspace/core/conversion/converters/impl/unary.cpp b/tmp/changes.txt
index a1d03a3..6b0ee2b 100644
--- a/workspace/core/conversion/converters/impl/unary.cpp
+++ b/tmp/changes.txt
@@ -10,45 +10,41 @@ namespace converters {
namespace impl {
namespace {
-
auto abs_registration TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern(
- {"aten::abs (Tensor self) -> Tensor",
- [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
- auto in = args[0].ITensor();
- bool unary_supported_input = in->getType() == nvinfer1::DataType::kFLOAT
- || in->getType() == nvinfer1::DataType::kHALF
- || in->getType() == nvinfer1::DataType::kINT8;
- if(unary_supported_input){
- auto unary_layer = ctx->net->addUnary(*in, nvinfer1::UnaryOperation::kABS);
- TORCHTRT_CHECK(unary_layer, "Unable to create abs layer from node: " << *n);
- unary_layer->setName(util::node_info(n).c_str());
- auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], unary_layer->getOutput(0));
- LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
- return true;
- }
- else{
- //For types not supported by kABS, use an elementwise implementation abs(x) = max(x, -1 * x)
- at::Tensor neg_one = torch::full({1}, -1).to(util::TRTDataTypeToScalarType(in->getType()));
- auto neg_one_const = tensor_to_const(ctx, neg_one);
- auto neg_layer = add_elementwise(
+ {"aten::abs (Tensor self) -> Tensor", [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+ auto in = args[0].ITensor();
+ bool unary_supported_input = in->getType() == nvinfer1::DataType::kFLOAT ||
+ in->getType() == nvinfer1::DataType::kHALF || in->getType() == nvinfer1::DataType::kINT8;
+ if (unary_supported_input) {
+ auto unary_layer = ctx->net->addUnary(*in, nvinfer1::UnaryOperation::kABS);
+ TORCHTRT_CHECK(unary_layer, "Unable to create abs layer from node: " << *n);
+ unary_layer->setName(util::node_info(n).c_str());
+ auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], unary_layer->getOutput(0));
+ LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+ return true;
+ } else {
+ // For types not supported by kABS, use an elementwise implementation abs(x) = max(x, -1 * x)
+ at::Tensor neg_one = torch::full({1}, -1).to(util::TRTDataTypeToScalarType(in->getType()));
+ auto neg_one_const = tensor_to_const(ctx, neg_one);
+ auto neg_layer = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
in,
neg_one_const,
util::node_info(n) + std::string("_Negation"));
- TORCHTRT_CHECK(neg_layer, "Unable to create prod layer from node: " << *n);
- auto max_layer = add_elementwise(
+ TORCHTRT_CHECK(neg_layer, "Unable to create prod layer from node: " << *n);
+ auto max_layer = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kMAX,
in,
neg_layer->getOutput(0),
util::node_info(n) + std::string("_Max"));
- TORCHTRT_CHECK(max_layer, "Unable to create max layer from node: " << *n);
- auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], max_layer->getOutput(0));
- LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
- return true;
- }
- }});
+ TORCHTRT_CHECK(max_layer, "Unable to create max layer from node: " << *n);
+ auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], max_layer->getOutput(0));
+ LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+ return true;
+ }
+ }});
#define convert(unary, trt_type) \
auto unary##_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern( \
diff --git a/workspace/tests/core/conversion/converters/test_element_wise.cpp b/tmp/changes.txt
index 994fb25..540fa12 100644
--- a/workspace/tests/core/conversion/converters/test_element_wise.cpp
+++ b/tmp/changes.txt
@@ -27,8 +27,8 @@ void pointwise_test_helper(
if (!singleInput) {
torch_inputs.push_back(at::randint(1, 5, shape2, {at::kCUDA}));
}
- if(int_tensors){
- for(size_t i = 0UL; i < torch_inputs.size(); ++i){
+ if (int_tensors) {
+ for (size_t i = 0UL; i < torch_inputs.size(); ++i) {
torch_inputs[i] = torch_inputs[i].to(at::kInt);
}
}
diff --git a/workspace/tests/core/conversion/converters/test_unary.cpp b/tmp/changes.txt
index a7ab3bb..1d40c3c 100644
--- a/workspace/tests/core/conversion/converters/test_unary.cpp
+++ b/tmp/changes.txt
@@ -1,9 +1,9 @@
#include <string>
-#include "torch/torch.h"
#include "core/compiler.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"
+#include "torch/torch.h"
namespace {
std::string gen_test_graph(const std::string& unary) {
@@ -22,7 +22,7 @@ TEST(Converters, ATenAbsIntConvertsCorrectly) {
auto in = at::tensor({-1, 1, -2, 2, -3, 3}, {at::kCUDA}).to(torch::kInt32);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
- auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});
+ auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});
in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
diff --git a/workspace/tests/core/conversion/converters/test_select.cpp b/tmp/changes.txt
index 03b6bda..67b760a 100644
--- a/workspace/tests/core/conversion/converters/test_select.cpp
+++ b/tmp/changes.txt
@@ -376,7 +376,7 @@ TEST(Converters, ATenSliceListConvertsCorrectly) {
%slice : Tensor[] = aten::slice(%list, %1, %2, %3)
%out.1 : Tensor, %out.2 : Tensor = prim::ListUnpack(%slice)
return (%out.1, %out.2))IR";
-
+
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());
ERROR: Some files do not conform to style guidelines
The format changed? its now an ipynb.txt, is this intentional? |
No, not intentional, thank you for flagging. Corrected it now. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There are some changes that do not conform to C++ style guidelines:
diff --git a/workspace/core/conversion/evaluators/aten.cpp b/tmp/changes.txt
index 4d8795f..c8c2c00 100644
--- a/workspace/core/conversion/evaluators/aten.cpp
+++ b/tmp/changes.txt
@@ -184,7 +184,7 @@ auto aten_registrations TORCHTRT_UNUSED =
int64_t start = 0;
auto startIVal = args.at(n->input(1)).IValue();
- if(!startIVal->isNone()){
+ if (!startIVal->isNone()) {
start = args.at(n->input(1)).unwrapToInt();
}
int64_t end = args.at(n->input(2)).unwrapToInt();
diff --git a/workspace/core/conversion/converters/impl/unary.cpp b/tmp/changes.txt
index a1d03a3..6b0ee2b 100644
--- a/workspace/core/conversion/converters/impl/unary.cpp
+++ b/tmp/changes.txt
@@ -10,45 +10,41 @@ namespace converters {
namespace impl {
namespace {
-
auto abs_registration TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern(
- {"aten::abs (Tensor self) -> Tensor",
- [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
- auto in = args[0].ITensor();
- bool unary_supported_input = in->getType() == nvinfer1::DataType::kFLOAT
- || in->getType() == nvinfer1::DataType::kHALF
- || in->getType() == nvinfer1::DataType::kINT8;
- if(unary_supported_input){
- auto unary_layer = ctx->net->addUnary(*in, nvinfer1::UnaryOperation::kABS);
- TORCHTRT_CHECK(unary_layer, "Unable to create abs layer from node: " << *n);
- unary_layer->setName(util::node_info(n).c_str());
- auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], unary_layer->getOutput(0));
- LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
- return true;
- }
- else{
- //For types not supported by kABS, use an elementwise implementation abs(x) = max(x, -1 * x)
- at::Tensor neg_one = torch::full({1}, -1).to(util::TRTDataTypeToScalarType(in->getType()));
- auto neg_one_const = tensor_to_const(ctx, neg_one);
- auto neg_layer = add_elementwise(
+ {"aten::abs (Tensor self) -> Tensor", [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+ auto in = args[0].ITensor();
+ bool unary_supported_input = in->getType() == nvinfer1::DataType::kFLOAT ||
+ in->getType() == nvinfer1::DataType::kHALF || in->getType() == nvinfer1::DataType::kINT8;
+ if (unary_supported_input) {
+ auto unary_layer = ctx->net->addUnary(*in, nvinfer1::UnaryOperation::kABS);
+ TORCHTRT_CHECK(unary_layer, "Unable to create abs layer from node: " << *n);
+ unary_layer->setName(util::node_info(n).c_str());
+ auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], unary_layer->getOutput(0));
+ LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+ return true;
+ } else {
+ // For types not supported by kABS, use an elementwise implementation abs(x) = max(x, -1 * x)
+ at::Tensor neg_one = torch::full({1}, -1).to(util::TRTDataTypeToScalarType(in->getType()));
+ auto neg_one_const = tensor_to_const(ctx, neg_one);
+ auto neg_layer = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kPROD,
in,
neg_one_const,
util::node_info(n) + std::string("_Negation"));
- TORCHTRT_CHECK(neg_layer, "Unable to create prod layer from node: " << *n);
- auto max_layer = add_elementwise(
+ TORCHTRT_CHECK(neg_layer, "Unable to create prod layer from node: " << *n);
+ auto max_layer = add_elementwise(
ctx,
nvinfer1::ElementWiseOperation::kMAX,
in,
neg_layer->getOutput(0),
util::node_info(n) + std::string("_Max"));
- TORCHTRT_CHECK(max_layer, "Unable to create max layer from node: " << *n);
- auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], max_layer->getOutput(0));
- LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
- return true;
- }
- }});
+ TORCHTRT_CHECK(max_layer, "Unable to create max layer from node: " << *n);
+ auto out_tensor = ctx->AssociateValueAndTensor(n->outputs()[0], max_layer->getOutput(0));
+ LOG_DEBUG("Output tensor shape: " << out_tensor->getDimensions());
+ return true;
+ }
+ }});
#define convert(unary, trt_type) \
auto unary##_registrations TORCHTRT_UNUSED = RegisterNodeConversionPatterns().pattern( \
diff --git a/workspace/tests/core/conversion/converters/test_element_wise.cpp b/tmp/changes.txt
index 994fb25..540fa12 100644
--- a/workspace/tests/core/conversion/converters/test_element_wise.cpp
+++ b/tmp/changes.txt
@@ -27,8 +27,8 @@ void pointwise_test_helper(
if (!singleInput) {
torch_inputs.push_back(at::randint(1, 5, shape2, {at::kCUDA}));
}
- if(int_tensors){
- for(size_t i = 0UL; i < torch_inputs.size(); ++i){
+ if (int_tensors) {
+ for (size_t i = 0UL; i < torch_inputs.size(); ++i) {
torch_inputs[i] = torch_inputs[i].to(at::kInt);
}
}
diff --git a/workspace/tests/core/conversion/converters/test_unary.cpp b/tmp/changes.txt
index a7ab3bb..1d40c3c 100644
--- a/workspace/tests/core/conversion/converters/test_unary.cpp
+++ b/tmp/changes.txt
@@ -1,9 +1,9 @@
#include <string>
-#include "torch/torch.h"
#include "core/compiler.h"
#include "gtest/gtest.h"
#include "tests/util/util.h"
#include "torch/csrc/jit/ir/irparser.h"
+#include "torch/torch.h"
namespace {
std::string gen_test_graph(const std::string& unary) {
@@ -22,7 +22,7 @@ TEST(Converters, ATenAbsIntConvertsCorrectly) {
auto in = at::tensor({-1, 1, -2, 2, -3, 3}, {at::kCUDA}).to(torch::kInt32);
auto params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
- auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});
+ auto jit_results = torch_tensorrt::tests::util::RunGraph(g, params, {in});
in = at::clone(in);
params = torch_tensorrt::core::ir::get_static_params(g->inputs(), {});
diff --git a/workspace/tests/core/conversion/converters/test_select.cpp b/tmp/changes.txt
index 03b6bda..67b760a 100644
--- a/workspace/tests/core/conversion/converters/test_select.cpp
+++ b/tmp/changes.txt
@@ -376,7 +376,7 @@ TEST(Converters, ATenSliceListConvertsCorrectly) {
%slice : Tensor[] = aten::slice(%list, %1, %2, %3)
%out.1 : Tensor, %out.2 : Tensor = prim::ListUnpack(%slice)
return (%out.1, %out.2))IR";
-
+
auto g = std::make_shared<torch::jit::Graph>();
torch::jit::parseIR(graph, g.get());
ERROR: Some files do not conform to style guidelines
Description
Added notebook demonstrating the workflows for QAT & PTQ
Fixes # (issue)
Type of change
Please delete options that are not relevant and/or add your own.
Checklist: