Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: fix the "schema not found for node" error #1236

Merged
merged 4 commits into from
Aug 15, 2022
Merged

Conversation

bowang007
Copy link
Collaborator

Signed-off-by: Bo Wang bowa@nvidia.com

Description

In partitioning, when we check if a node would modify the input value, we use the node->schema() function from PyTorch previously. However, this function could return a nullptr in some cases, which triggers a error showing Schema not found for node. File a bug report

Fixes #1227

Type of change

  • Bug fix (non-breaking change which fixes an issue)

Checklist:

  • My code follows the style guidelines of this project (You can use the linters)
  • I have performed a self-review of my own code
  • I have commented my code, particularly in hard-to-understand areas and hacks
  • I have made corresponding changes to the documentation
  • I have added tests to verify my fix or my feature
  • New and existing unit tests pass locally with my changes
  • I have added the relevant labels to my PR in so that relevant reviewers are notified

@github-actions github-actions bot added component: core Issues re: The core compiler component: partitioning labels Aug 5, 2022
@bowang007 bowang007 changed the title fix: fix the schema not found for node error fix: fix the "schema not found for node" error Aug 5, 2022
@github-actions github-actions bot requested review from narendasan and peri044 August 5, 2022 22:27
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some changes that do not conform to C++ style guidelines:

diff --git a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp b/tmp/changes.txt
index 5aeac3b..775c71d 100644
--- a/workspace/py/torch_tensorrt/csrc/tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -225,11 +225,17 @@ core::CompileSpec CompileSpec::toInternalCompileSpec() {
  info.convert_info.engine_settings.num_avg_timing_iters = num_avg_timing_iters;
  TORCHTRT_CHECK(workspace_size >= 0, "workspace_size must be 0 or greater");
  info.convert_info.engine_settings.workspace_size = workspace_size;
-  TORCHTRT_CHECK(dla_sram_size >= 4096, "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
+  TORCHTRT_CHECK(
+      dla_sram_size >= 4096,
+      "DLA managed SRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 MiB");
  info.convert_info.engine_settings.dla_sram_size = dla_sram_size;
-  TORCHTRT_CHECK(dla_local_dram_size >= 4096, "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
+  TORCHTRT_CHECK(
+      dla_local_dram_size >= 4096,
+      "DLA Local DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 1 GiB");
  info.convert_info.engine_settings.dla_local_dram_size = dla_local_dram_size;
-  TORCHTRT_CHECK(dla_global_dram_size >= 4096, "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
+  TORCHTRT_CHECK(
+      dla_global_dram_size >= 4096,
+      "DLA Global DRAM size must be at least 4 KiB and must be a power of 2. This defaults to 512 MiB");
  info.convert_info.engine_settings.dla_global_dram_size = dla_global_dram_size;
  return info;
}
diff --git a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp b/tmp/changes.txt
index 9165b21..ba2e168 100644
--- a/workspace/py/torch_tensorrt/csrc/register_tensorrt_classes.cpp
+++ b/tmp/changes.txt
@@ -65,7 +65,8 @@ void RegisterTRTCompileSpec() {
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, workspace_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_sram_size);
  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_local_dram_size);
-  ADD_FIELD_GET_SET_REGISTRATION(TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
+  ADD_FIELD_GET_SET_REGISTRATION(
+      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, dla_global_dram_size);
  ADD_FIELD_GET_SET_REGISTRATION(
      TRTCompileSpecTSRegistration, torch_tensorrt::pyapi::CompileSpec, truncate_long_and_double);
}
diff --git a/workspace/core/conversion/conversionctx/ConversionCtx.cpp b/tmp/changes.txt
index a24a159..71159eb 100644
--- a/workspace/core/conversion/conversionctx/ConversionCtx.cpp
+++ b/tmp/changes.txt
@@ -107,7 +107,7 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
  }

  cfg->setAvgTimingIterations(settings.num_avg_timing_iters);
-  if (settings.workspace_size != 0){
+  if (settings.workspace_size != 0) {
    cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, settings.workspace_size);
  }

@@ -124,13 +124,13 @@ ConversionCtx::ConversionCtx(BuilderSettings build_settings)
        settings.enabled_precisions.find(nvinfer1::DataType::kFLOAT) == settings.enabled_precisions.end(),
        "DLA supports only fp16 or int8 precision");
    cfg->setDLACore(settings.device.dla_core);
-    if (settings.dla_sram_size != 1048576){
+    if (settings.dla_sram_size != 1048576) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_MANAGED_SRAM, settings.dla_sram_size);
    }
-    if (settings.dla_local_dram_size != 1073741824){
+    if (settings.dla_local_dram_size != 1073741824) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_LOCAL_DRAM, settings.dla_local_dram_size);
    }
-    if (settings.dla_global_dram_size != 536870912){
+    if (settings.dla_global_dram_size != 536870912) {
      cfg->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kDLA_GLOBAL_DRAM, settings.dla_global_dram_size);
    }
  }
diff --git a/workspace/core/conversion/evaluators/aten.cpp b/tmp/changes.txt
index 4d8795f..c8c2c00 100644
--- a/workspace/core/conversion/evaluators/aten.cpp
+++ b/tmp/changes.txt
@@ -184,7 +184,7 @@ auto aten_registrations TORCHTRT_UNUSED =

                      int64_t start = 0;
                      auto startIVal = args.at(n->input(1)).IValue();
-                      if(!startIVal->isNone()){
+                      if (!startIVal->isNone()) {
                        start = args.at(n->input(1)).unwrapToInt();
                      }
                      int64_t end = args.at(n->input(2)).unwrapToInt();
diff --git a/workspace/core/conversion/converters/converter_util.cpp b/tmp/changes.txt
index a6a2bbd..7452615 100644
--- a/workspace/core/conversion/converters/converter_util.cpp
+++ b/tmp/changes.txt
@@ -207,13 +207,13 @@ nvinfer1::ITensor* clamp(
    nvinfer1::ITensor* lower_bound,
    nvinfer1::ITensor* upper_bound,
    std::string const& name) {
-
  auto max_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMAX, x, lower_bound, "max layer for " + name);
  TORCHTRT_CHECK(max_layer, "Unable to create max layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min layer for clamp");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp");
  auto min_itensor = min_layer->getOutput(0);
@@ -227,13 +227,13 @@ nvinfer1::ITensor* clamp_to_input_dim(
    nvinfer1::ITensor* input_dim,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
  auto one = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one);

-  auto upper_bound_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
+  auto upper_bound_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, input_dim, one_itensor, "sub layer for " + name);
  TORCHTRT_CHECK(upper_bound_layer, "Unable to create sub layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << upper_bound_layer->getName() << " for clamp to inputDim");
  auto upper_bound = upper_bound_layer->getOutput(0);
@@ -243,7 +243,8 @@ nvinfer1::ITensor* clamp_to_input_dim(
  LOG_DEBUG(ctx->logger, "Create " << max_layer->getName() << " for clamp to inputDim");
  auto max_itensor = max_layer->getOutput(0);

-  auto min_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
+  auto min_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kMIN, max_itensor, upper_bound, "min layer for " + name);
  TORCHTRT_CHECK(min_layer, "Unable to create min_layer for clamp to inputDim");
  LOG_DEBUG(ctx->logger, "Create " << min_layer->getName() << " for clamp to inputDim");
  auto min_itensor = min_layer->getOutput(0);
@@ -257,7 +258,6 @@ nvinfer1::ITensor* normalize_indices(
    nvinfer1::ITensor* indices,
    int nbdims,
    std::string const& name) {
-
  auto zero = torch::zeros({nbdims}).to(torch::kI32);
  auto neg = -torch::ones({nbdims}).to(torch::kI32);
  auto zero_itensor = tensor_to_const(ctx, zero);
@@ -307,17 +307,20 @@ nvinfer1::ITensor* get_slice_size(
  at::Tensor one_tensor = torch::ones({nbdims}).to(torch::kI32);
  auto one_itensor = tensor_to_const(ctx, one_tensor);

-  auto sub_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
+  auto sub_layer =
+      add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUB, end, start, "get_slice_size sub layer for " + name);
  TORCHTRT_CHECK(sub_layer, "Unable to create sub layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << sub_layer->getName() << " for calculate_output_size");
  auto sub_itensor = sub_layer->getOutput(0);

-  auto div_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
+  auto div_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kDIV, sub_itensor, stride, "get_slice_size div layer for " + name);
  TORCHTRT_CHECK(div_layer, "Unable to create div layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << div_layer->getName() << " for calculate_output_size");
  auto div_itensor = div_layer->getOutput(0);

-  auto add_layer = add_elementwise(ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
+  auto add_layer = add_elementwise(
+      ctx, nvinfer1::ElementWiseOperation::kSUM, div_itensor, one_itensor, "get_slice_size sum layer for " + name);
  TORCHTRT_CHECK(add_layer, "Unable to create add layer in calculate_output_size");
  LOG_DEBUG(ctx->logger, "Create " << add_layer->getName() << " for calculate_output_size");
  auto size_itensor = add_layer->getOutput(0);
diff --git a/workspace/core/conversion/converters/impl/select.cpp b/tmp/changes.txt
index 0bb6ad0..c453466 100644
--- a/workspace/core/conversion/converters/impl/select.cpp
+++ b/tmp/changes.txt
@@ -105,121 +105,118 @@ nvinfer1::ITensor* roll(

auto select_registrations TORCHTRT_UNUSED =
    RegisterNodeConversionPatterns()
-        .pattern(
-            {"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensorOrFreeze(ctx);
-               auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
-               auto dim = args[1].unwrapToInt();
-               // Handle negative axis by refering to nbDims of input Tensor
-               dim = dim < 0 ? dim + maxDim : dim;
-               auto ind = (int32_t)args[2].unwrapToInt();
-               // Along the specified dimension, handle negative index by subtracting along length of dimension.
-               ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
-               LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
-               LOG_DEBUG("Dimension to select: " << dim);
-               LOG_DEBUG("Index: " << ind);
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
-               auto const_out = tensor_to_const(ctx, indices);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto out = gather_layer->getOutput(0);
+        .pattern({"aten::select.int(Tensor(a) self, int dim, int index) -> (Tensor(a))",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensorOrFreeze(ctx);
+                    auto maxDim = static_cast<int64_t>(in->getDimensions().nbDims);
+                    auto dim = args[1].unwrapToInt();
+                    // Handle negative axis by refering to nbDims of input Tensor
+                    dim = dim < 0 ? dim + maxDim : dim;
+                    auto ind = (int32_t)args[2].unwrapToInt();
+                    // Along the specified dimension, handle negative index by subtracting along length of dimension.
+                    ind = ind < 0 ? ind + in->getDimensions().d[dim] : ind;
+                    LOG_DEBUG("Gather input dimensions: " << in->getDimensions());
+                    LOG_DEBUG("Dimension to select: " << dim);
+                    LOG_DEBUG("Index: " << ind);
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::tensor({ind}).to(torch::kI32);
+                    auto const_out = tensor_to_const(ctx, indices);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, dim);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto out = gather_layer->getOutput(0);
+
+                    LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+
+                    if (out->getDimensions().nbDims != 1) {
+                      // IShuffleLayer removes redundant dimensions
+                      auto shuffle_layer = ctx->net->addShuffle(*out);
+                      TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                      shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
+                      shuffle_layer->setName(util::node_info(n).c_str());
+                      out = shuffle_layer->getOutput(0);
+                    }
+
+                    out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               LOG_DEBUG("Gather tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    auto start = (int32_t)args[2].unwrapToInt();
+                    auto length = (int32_t)args[3].unwrapToInt();

-               if (out->getDimensions().nbDims != 1) {
-                 // IShuffleLayer removes redundant dimensions
-                 auto shuffle_layer = ctx->net->addShuffle(*out);
-                 TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-                 shuffle_layer->setReshapeDimensions(util::squeezeDims(out->getDimensions(), dim));
-                 shuffle_layer->setName(util::node_info(n).c_str());
-                 out = shuffle_layer->getOutput(0);
-               }
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);

-               out = ctx->AssociateValueAndTensor(n->outputs()[0], out);
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow(Tensor(a) self, int dim, int start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               auto start = (int32_t)args[2].unwrapToInt();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(start, start + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);

-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);

-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
-        .pattern(
-            {"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto axis = args[1].unwrapToInt();
-               torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
-               int32_t startIdx = start.item().to<int32_t>();
-               auto length = (int32_t)args[3].unwrapToInt();
-
-               // index to access needs to be an at::Tensor
-               at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
-               auto weights = Weights(ctx, indices);
-
-               // IConstantLayer to convert indices from Weights to ITensor
-               auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
-               TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
-               auto const_out = const_layer->getOutput(0);
-
-               // IGatherLayer takes in input tensor, the indices, and the axis
-               // of input tensor to take indices from
-               auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
-               TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
-               auto gather_out = gather_layer->getOutput(0);
-
-               // IShuffleLayer removes redundant dimensions
-               auto shuffle_layer = ctx->net->addShuffle(*gather_out);
-               TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
-               shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
-               shuffle_layer->setName(util::node_info(n).c_str());
-               auto shuffle_out = shuffle_layer->getOutput(0);
-
-               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
-
-               LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+                    return true;
+                  }})
+        .pattern({"aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto axis = args[1].unwrapToInt();
+                    torch::Tensor start = args[2].IValue()->toTensor().to(torch::kI32);
+                    int32_t startIdx = start.item().to<int32_t>();
+                    auto length = (int32_t)args[3].unwrapToInt();
+
+                    // index to access needs to be an at::Tensor
+                    at::Tensor indices = torch::arange(startIdx, startIdx + length, 1).to(torch::kI32);
+                    auto weights = Weights(ctx, indices);
+
+                    // IConstantLayer to convert indices from Weights to ITensor
+                    auto const_layer = ctx->net->addConstant(weights.shape, weights.data);
+                    TORCHTRT_CHECK(const_layer, "Unable to create constant layer from node: " << *n);
+                    auto const_out = const_layer->getOutput(0);
+
+                    // IGatherLayer takes in input tensor, the indices, and the axis
+                    // of input tensor to take indices from
+                    auto gather_layer = ctx->net->addGather(*in, *const_out, axis);
+                    TORCHTRT_CHECK(gather_layer, "Unable to create gather layer from node: " << *n);
+                    auto gather_out = gather_layer->getOutput(0);
+
+                    // IShuffleLayer removes redundant dimensions
+                    auto shuffle_layer = ctx->net->addShuffle(*gather_out);
+                    TORCHTRT_CHECK(shuffle_layer, "Unable to create shuffle layer from node: " << *n);
+                    shuffle_layer->setReshapeDimensions(util::unpadDims(gather_out->getDimensions()));
+                    shuffle_layer->setName(util::node_info(n).c_str());
+                    auto shuffle_out = shuffle_layer->getOutput(0);
+
+                    auto out = ctx->AssociateValueAndTensor(n->outputs()[0], shuffle_out);
+
+                    LOG_DEBUG("Output tensor shape: " << out->getDimensions());

-               return true;
-             }})
+                    return true;
+                  }})
        .pattern(
            {"aten::embedding(Tensor weight, Tensor indices, int padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -241,30 +238,29 @@ auto select_registrations TORCHTRT_UNUSED =

               return true;
             }})
-        .pattern(
-            {"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
-             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
-               auto in = args[0].ITensor();
-               auto shifts = args[1].unwrapToIntList().vec();
-               auto dims = args[2].unwrapToIntList().vec();
-
-               TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
-               if (ctx->input_is_dynamic) {
-                 TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
-               } else {
-                 auto in_shape = util::toVec(in->getDimensions());
-                 for (size_t i = 0; i < dims.size(); i++) {
-                   auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
-                   TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
-                   in = roll(ctx, in, shifts[i], dim, in_shape);
-                 }
-                 auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
-
-                 LOG_DEBUG("Output tensor shape: " << out->getDimensions());
-
-                 return true;
-               }
-             }})
+        .pattern({"aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)",
+                  [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
+                    auto in = args[0].ITensor();
+                    auto shifts = args[1].unwrapToIntList().vec();
+                    auto dims = args[2].unwrapToIntList().vec();
+
+                    TORCHTRT_CHECK(dims.size() == shifts.size(), "dims.size() should be equal to shifts.size()");
+                    if (ctx->input_is_dynamic) {
+                      TORCHTRT_THROW_ERROR("aten::roll is currently not support in dynamic input shape compilation");
+                    } else {
+                      auto in_shape = util::toVec(in->getDimensions());
+                      for (size_t i = 0; i < dims.size(); i++) {
+                        auto dim = dims[i] < 0 ? (in_shape.size() + dims[i]) : dims[i];
+                        TORCHTRT_CHECK(dim < in_shape.size(), "Dimension out of range");
+                        in = roll(ctx, in, shifts[i], dim, in_shape);
+                      }
+                      auto out = ctx->AssociateValueAndTensor(n->outputs()[0], in);
+
+                      LOG_DEBUG("Output tensor shape: " << out->getDimensions());
+
+                      return true;
+                    }
+                  }})
        .pattern(
            {"aten::index.Tensor(Tensor self, Tensor?[] indices) -> (Tensor)",
             [](ConversionCtx* ctx, const torch::jit::Node* n, args& args) -> bool {
@@ -321,7 +317,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int startIdx = 0;
               auto startIdxIVal = args[2].IValue();
               if (!startIdxIVal->isNone()) {
-                 startIdx = startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
+                 startIdx =
+                     startIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : startIdxIVal->toInt();
                 startIdx = maxDim == -1 ? startIdx : std::min(startIdx, maxDim);
               }
               // Handle case when given tensor index is negative
@@ -333,7 +330,8 @@ auto select_registrations TORCHTRT_UNUSED =
               int endIdx = maxDim; // -1 for dynamic shape
               auto endIdxIVal = args[3].IValue();
               if (!endIdxIVal->isNone()) {
-                 int truncate_value = endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
+                 int truncate_value =
+                     endIdxIVal->toInt() > std::numeric_limits<int32_t>::max() ? maxDim : endIdxIVal->toInt();
                 endIdx = maxDim == -1 ? truncate_value : std::min(truncate_value, maxDim);
               }
               if (maxDim > 0) {
@@ -387,7 +385,8 @@ auto select_registrations TORCHTRT_UNUSED =
                 // update start and end
                 nvinfer1::ITensor* out_start;
                 nvinfer1::ITensor* out_end;
-                 auto start_end = normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
+                 auto start_end =
+                     normalize_start_and_end(ctx, ishape_tensor, start_itensor, end_itensor, nbdims, node_name);
                 out_start = start_end[0];
                 out_end = start_end[1];

@@ -399,7 +398,7 @@ auto select_registrations TORCHTRT_UNUSED =
                 slice_layer->setInput(2, *size_itensor); // size, must be set if input is dynamic
               }
               auto slice_out = slice_layer->getOutput(0);
-               
+
               auto out = ctx->AssociateValueAndTensor(n->outputs()[0], slice_out);
               LOG_DEBUG("Slice layer output shape: " << out->getDimensions());

diff --git a/workspace/core/lowering/register_trt_placeholder_ops.cpp b/tmp/changes.txt
index 5ba8171..17d7d3f 100644
--- a/workspace/core/lowering/register_trt_placeholder_ops.cpp
+++ b/tmp/changes.txt
@@ -10,7 +10,10 @@ c10::AliasAnalysisKind aliasAnalysisFromSchema() {
RegisterOperators trt_placeholder_ops_reg({
    /// Op marks a Tensor to be conveted from an Torch Tensor
    /// to a TRT constant Tensor
-    Operator("trt::const(Tensor val) -> Tensor", [](Stack& stack) { /*noop*/ }, aliasAnalysisFromSchema()),
+    Operator(
+        "trt::const(Tensor val) -> Tensor",
+        [](Stack& stack) { /*noop*/ },
+        aliasAnalysisFromSchema()),
});

} // namespace jit
diff --git a/workspace/core/conversion/converters/converter_util.h b/tmp/changes.txt
index cdf2ee5..b155499 100644
--- a/workspace/core/conversion/converters/converter_util.h
+++ b/tmp/changes.txt
@@ -1,8 +1,8 @@
#pragma once

+#include <limits>
#include <map>
#include <string>
-#include <limits>

#include "core/conversion/conversionctx/ConversionCtx.h"
#include "core/conversion/converters/Weights.h"
diff --git a/workspace/tests/core/conversion/converters/test_cast.cpp b/tmp/changes.txt
index 092cdb3..d26c7a0 100644
--- a/workspace/tests/core/conversion/converters/test_cast.cpp
+++ b/tmp/changes.txt
@@ -135,7 +135,6 @@ TEST(Converters, ATenBoolToINT32TensorConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenToSingleConvertsCorrectly) {
  const auto graph = R"IR(
    graph(%y.1 : Tensor):
@@ -164,7 +163,6 @@ TEST(Converters, ATenToSingleConvertsCorrectly) {
  ASSERT_TRUE(torch_tensorrt::tests::util::almostEqual(jit_results[0], trt, 2e-6));
}

-
TEST(Converters, ATenTypeAsConvertsCorrectly) {
  const auto graph = R"IR(
      graph(%0 : Tensor,
diff --git a/workspace/tests/core/conversion/converters/test_element_wise.cpp b/tmp/changes.txt
index 994fb25..540fa12 100644
--- a/workspace/tests/core/conversion/converters/test_element_wise.cpp
+++ b/tmp/changes.txt
@@ -27,8 +27,8 @@ void pointwise_test_helper(
  if (!singleInput) {
    torch_inputs.push_back(at::randint(1, 5, shape2, {at::kCUDA}));
  }
-  if(int_tensors){
-    for(size_t i = 0UL; i < torch_inputs.size(); ++i){
+  if (int_tensors) {
+    for (size_t i = 0UL; i < torch_inputs.size(); ++i) {
      torch_inputs[i] = torch_inputs[i].to(at::kInt);
    }
  }
diff --git a/workspace/tests/core/conversion/converters/test_select.cpp b/tmp/changes.txt
index 03b6bda..67b760a 100644
--- a/workspace/tests/core/conversion/converters/test_select.cpp
+++ b/tmp/changes.txt
@@ -376,7 +376,7 @@ TEST(Converters, ATenSliceListConvertsCorrectly) {
          %slice : Tensor[] = aten::slice(%list, %1, %2, %3)
          %out.1 : Tensor, %out.2 : Tensor = prim::ListUnpack(%slice)
          return (%out.1, %out.2))IR";
-  
+
  auto g = std::make_shared<torch::jit::Graph>();

  torch::jit::parseIR(graph, g.get());
diff --git a/workspace/cpp/bin/torchtrtc/main.cpp b/tmp/changes.txt
index 6c207d7..51ec2c5 100644
--- a/workspace/cpp/bin/torchtrtc/main.cpp
+++ b/tmp/changes.txt
@@ -117,8 +117,7 @@ int main(int argc, char** argv) {
      parser, "num_iters", "Number of averaging timing iterations used to select kernels", {"num-avg-timing-iters"});
  args::ValueFlag<uint64_t> workspace_size(
      parser, "workspace_size", "Maximum size of workspace given to TensorRT", {"workspace-size"});
-  args::ValueFlag<uint64_t> dla_sram_size(
-      parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
+  args::ValueFlag<uint64_t> dla_sram_size(parser, "dla_sram_size", "DLA managed SRAM size", {"dla-sram-size"});
  args::ValueFlag<uint64_t> dla_local_dram_size(
      parser, "dla_local_dram_size", "DLA Local DRAM size", {"dla-local-dram-size"});
  args::ValueFlag<uint64_t> dla_global_dram_size(
ERROR: Some files do not conform to style guidelines

Copy link
Collaborator

@peri044 peri044 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM

@peri044
Copy link
Collaborator

peri044 commented Aug 7, 2022

@frank-wei @narendasan It looks like FX tests test-py-fx-x86_64-pyt-release are failing with the following error. Is this a known issue ?

RuntimeError: CUDA error: an illegal memory access was encountered

@frank-wei
Copy link
Contributor

@frank-wei @narendasan It looks like FX tests test-py-fx-x86_64-pyt-release are failing with the following error. Is this a known issue ?

RuntimeError: CUDA error: an illegal memory access was encountered

I merged my fix for nightly yesterday. Did you rebase on master?

@narendasan narendasan added the release: v1.2 Tagged to be included in v1.2 label Aug 8, 2022
@github-actions github-actions bot requested review from narendasan and peri044 August 8, 2022 20:39
Signed-off-by: Bo Wang <bowa@nvidia.com>
Signed-off-by: Bo Wang <bowa@nvidia.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to Python style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

Signed-off-by: Bo Wang <bowa@nvidia.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to Python style guidelines

if (formal && formal->isWrite()) {
LOG_GRAPH("<Whatever is doing the modifying> Is modifying node " << util::node_info(node));
Copy link
Collaborator

@narendasan narendasan Aug 10, 2022

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

😄 I didn't mean put "<Whatever is doing the modifying>" verbatim, just what ever component is running this. not sure if its part of shape analysis or some other phase of partitioning

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lol. Ok let me change it.

Signed-off-by: Bo Wang <bowa@nvidia.com>
Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to Python style guidelines

Copy link

@github-actions github-actions bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code conforms to C++ style guidelines

@narendasan narendasan merged commit 06de861 into master Aug 15, 2022
@narendasan narendasan deleted the fix_schema_error branch August 15, 2022 19:58
@HOOLoLo
Copy link

HOOLoLo commented Sep 8, 2022

How can i intstall the latest version in my docker ? the latest released docker (22.08) seems haven't fixed the bug yet. @narendasan

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
cla signed component: core Issues re: The core compiler component: partitioning release: v1.2 Tagged to be included in v1.2
Projects
None yet
Development

Successfully merging this pull request may close these issues.

🐛 [Bug] Cannot export traced model to TensorRT
6 participants