Skip to content

pseudotensor/temporal_autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

What: Temporal Autoencoder for Predicting Video

How: Tensorflow version of CNN to LSTM to uCNN

Why:

Inspired by papers:

http://www.jmlr.org/proceedings/papers/v2/sutskever07a/sutskever07a.pdf https://arxiv.org/abs/1411.4389 https://arxiv.org/abs/1504.08023 https://arxiv.org/abs/1506.04214 (like this paper with RNN but now with LSTM) https://arxiv.org/abs/1511.06380 https://arxiv.org/abs/1511.05440 https://arxiv.org/abs/1605.08104 http://file.scirp.org/pdf/AM20100400007_46529567.pdf https://arxiv.org/abs/1607.03597 http://web.mit.edu/vondrick/tinyvideoa https://arxiv.org/abs/1605.07157 https://arxiv.org/abs/1502.04681 https://arxiv.org/abs/1605.07157 http://www.ri.cmu.edu/pub_files/2014/3/egpaper_final.pdf

Uses parts of (or inspired by) the following repos:

https://github.com/tensorflow/models/blob/master/real_nvp/real_nvp_utils.py https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py https://github.com/machrisaa/tensorflow-vgg https://github.com/loliverhennigh/ https://coxlab.github.io/prednet/ https://github.com/tensorflow/models/tree/master/video_prediction https://github.com/yoonkim/lstm-char-cnn https://github.com/anayebi/keras-extra https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series https://github.com/jtoy/awesome-tensorflow https://github.com/aymericdamien/TensorFlow-Examples

Inspired by the following articles:

http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/deep-learning-ai-listens-to-machines-for-signs-of-trouble?adbsc=social_20170124_69611636&adbid=823956941219053569&adbpl=tw&adbpr=740238495952736256

http://www.theverge.com/2016/8/4/12369494/descartes-artificial-intelligence-crop-predictions-usda

https://devblogs.nvidia.com/parallelforall/exploring-spacenet-dataset-using-digits/

And inspired to a lesser extent the following papers:

https://arxiv.org/abs/1508.01211 https://arxiv.org/abs/1507.08750 https://arxiv.org/abs/1505.00295 www.ijcsi.org/papers/IJCSI-8-4-1-139-148.pdf cs231n.stanford.edu/reports2016/223_Report.pdf

Program Requirements:

  • Tensorflow 0.12
  • Python 2.7
  • OpenCV

Post-Processing requirements

  • avconv, mencoder, MP4Box,smplayer

How to run:

python main.py

Post-processing: making model vs. predicted video:

sh mergemov.sh

smplayer out_all.mp4

or

smplayer out_all2_fast.mp4

Some training results:

  • Balls, slow movie: IMAGE ALT TEXT HERE

  • Balls, fast movie: IMAGE ALT TEXT HERE

  • Training Curve in Tensorflow (norm order 80): Alt text

  • Wheel, slow movie: IMAGE ALT TEXT HERE

  • Wheel, fast movie: IMAGE ALT TEXT HERE

  • Training Curve in Tensorflow (norm order 40): Alt text

Parameters:

  1. In main.py:
  • Choose global flags
  • In main():
    • Choose to use checkpoints (if exist) or not: continuetrain
    • type of model: modeltype
    • number of balls: num_balls
  1. In balls.py:
  • SIZE: size of ball's bounding box in pixels

Ideas and Future Work:

  • Test on other models

  • Try more filters

  • Try temporal convolution

  • Try other LSTM architectures (C-peek, bind forget-recall, GRU, etc.)

  • Try adversarial loss:

https://github.com/carpedm20/DCGAN-tensorflow http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ (pytorch) http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ https://arxiv.org/pdf/1511.05644v2.pdf

  • Try more depth in time

  • Train with geodesic acceleration (can't be done in python in tensorflow)

  • Try homogenous LSTM/CNN architecture

  • Include depth in CNN even if not explicitly 3D data, to avoid issues with overlapping pixel space causing diffusion

  • Estimate velocity field in rgb, to avoid collisions most likely state as averaging to no motion due to L2 error's treatment of two possible states.

  • Use entropy generation rate to train attention where can best predict.

  • Try rotation, faces, and ultimately real video.

About

Temporal Autoencoder Project

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published