http://www.jmlr.org/proceedings/papers/v2/sutskever07a/sutskever07a.pdf https://arxiv.org/abs/1411.4389 https://arxiv.org/abs/1504.08023 https://arxiv.org/abs/1506.04214 (like this paper with RNN but now with LSTM) https://arxiv.org/abs/1511.06380 https://arxiv.org/abs/1511.05440 https://arxiv.org/abs/1605.08104 http://file.scirp.org/pdf/AM20100400007_46529567.pdf https://arxiv.org/abs/1607.03597 http://web.mit.edu/vondrick/tinyvideoa https://arxiv.org/abs/1605.07157 https://arxiv.org/abs/1502.04681 https://arxiv.org/abs/1605.07157 http://www.ri.cmu.edu/pub_files/2014/3/egpaper_final.pdf
https://github.com/tensorflow/models/blob/master/real_nvp/real_nvp_utils.py https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py https://github.com/machrisaa/tensorflow-vgg https://github.com/loliverhennigh/ https://coxlab.github.io/prednet/ https://github.com/tensorflow/models/tree/master/video_prediction https://github.com/yoonkim/lstm-char-cnn https://github.com/anayebi/keras-extra https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series https://github.com/jtoy/awesome-tensorflow https://github.com/aymericdamien/TensorFlow-Examples
http://www.theverge.com/2016/8/4/12369494/descartes-artificial-intelligence-crop-predictions-usda
https://devblogs.nvidia.com/parallelforall/exploring-spacenet-dataset-using-digits/
https://arxiv.org/abs/1508.01211 https://arxiv.org/abs/1507.08750 https://arxiv.org/abs/1505.00295 www.ijcsi.org/papers/IJCSI-8-4-1-139-148.pdf cs231n.stanford.edu/reports2016/223_Report.pdf
- Tensorflow 0.12
- Python 2.7
- OpenCV
- avconv, mencoder, MP4Box,smplayer
python main.py
sh mergemov.sh
smplayer out_all.mp4
or
smplayer out_all2_fast.mp4
- In main.py:
- Choose global flags
- In main():
- Choose to use checkpoints (if exist) or not: continuetrain
- type of model: modeltype
- number of balls: num_balls
- In balls.py:
- SIZE: size of ball's bounding box in pixels
-
Test on other models
-
Try more filters
-
Try temporal convolution
-
Try other LSTM architectures (C-peek, bind forget-recall, GRU, etc.)
-
Try adversarial loss:
https://github.com/carpedm20/DCGAN-tensorflow http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ (pytorch) http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/ https://arxiv.org/pdf/1511.05644v2.pdf
-
Try more depth in time
-
Train with geodesic acceleration (can't be done in python in tensorflow)
-
Try homogenous LSTM/CNN architecture
-
Include depth in CNN even if not explicitly 3D data, to avoid issues with overlapping pixel space causing diffusion
-
Estimate velocity field in rgb, to avoid collisions most likely state as averaging to no motion due to L2 error's treatment of two possible states.
-
Use entropy generation rate to train attention where can best predict.
-
Try rotation, faces, and ultimately real video.