Skip to content
This repository has been archived by the owner on Apr 9, 2024. It is now read-only.
/ AttentionCluster Public archive

TensorFlow Implementation of "Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification".

License

Notifications You must be signed in to change notification settings

pomonam/AttentionCluster

Repository files navigation

AttentionCluster

This code implements attention clusters with shifting operation. It was developed on top of starters code provided by Google AI. Detailed table of contents and descriptions can be found at the original repository.

The module was implemented & tested in TensorFlow 1.8.0. Attention Cluster is distributed under Apache-2 License (see the LICENCE file).

Differences with the original paper

  • The respository makes use of youtube-8m dataset. The original paper uses Flash-MNIST.
  • Empirically, I found that batch normalization layer at attention mechanism increases the convergence time & GAP.
  • In between MoE, I used wide context gating developed from [2].
  • Dropout layers were actively used to prevent overfitting. This was inspired by [3].

Training

Training dataset is available in Google Cloud Platform. In order to use the following command, first download GCP SDK. It is recommanded to adopt early stopping.

gcloud ml-engine local train --package-path=youtube-8m --module-name=youtube-8m.train -- --train_data_pattern='gs://youtube8m-ml-us-east1/2/frame/train/train*.tfrecord' --frame_features=True --base_learning_rate=0.0002 --model=AttentionClusterModule --feature_names='rgb,audio' --feature_sizes='1024,128' --batch_size=128 --train_dir=AttentionClusterModule --base_learning_rate=0.0002 --runtime-version=1.8 --video_cluster_size=128 --audio_cluster_size=16 --shift_operation=True --filter_size=2 --cluster_dropout=0.7 --ff_dropout=0.8 --hidden_size=512 --moe_num_mixtures=2 --learning_rate_decay_examples=2000000 --learning_rate_decay=0.85 --num_epochs=4 --moe_l2=1e-6 --max_step=400000 

Evaluation

Validation / Test dataset is also available in Google Cloud Platform. With this parameter settings, I was able to acheive 86.8 GAP on test data.

gcloud ml-engine local train --package-path=youtube-8m --module-name=youtube-8m.eval -- --eval_data_pattern='gs://youtube8m-ml-us-east1/2/frame/validate/validate*.tfrecord' --frame_features=True --model=AttentionClusterModule --feature_names='rgb,audio' --feature_sizes='1024,128' --batch_size=128 --train_dir=AttentionClusterModule --base_learning_rate=0.0002 --run_once=True --video_cluster_size=128 --audio_cluster_size=16 --shift_operation=True --filter_size=2 --cluster_dropout=0.7 --ff_dropout=0.8 --hidden_size=512 --moe_num_mixtures=2 --learning_rate_decay_examples=2000000 --learning_rate_decay=0.85 --num_epochs=4 --moe_l2=1e-6 --max_step=400000 

References

Please note that I am not the author of the following references.

[1] https://arxiv.org/abs/1711.09550
[2] https://arxiv.org/abs/1706.06905
[3] https://arxiv.org/abs/1706.03762

Changes

  • 1.00 (05 August 2018)
    • Initial public release

Contributors

About

TensorFlow Implementation of "Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification".

Topics

Resources

License

Stars

Watchers

Forks

Languages