forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathggml-alloc.c
810 lines (681 loc) · 27.9 KB
/
ggml-alloc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#include "ggml-alloc.h"
#include "ggml-backend-impl.h"
#include "ggml.h"
#include "ggml-impl.h"
#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MAX_FREE_BLOCKS 256
//#define GGML_ALLOCATOR_DEBUG
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
#define AT_PRINTF(...)
// TODO: GGML_PAD ?
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
assert(alignment && !(alignment & (alignment - 1))); // power of 2
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
return offset + align;
}
struct free_block {
void * addr;
size_t size;
};
struct ggml_tallocr {
struct ggml_backend_buffer * buffer;
bool buffer_owned;
void * base;
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
size_t max_size;
bool measure;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
#endif
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
return;
}
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
alloc->allocated_tensors[i] = NULL;
return;
}
}
printf("tried to free tensor %s not found\n", tensor->name);
GGML_ASSERT(!"tensor not found");
}
#endif
// check if a tensor is allocated by this buffer
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer);
}
static bool ggml_is_view(struct ggml_tensor * t) {
return t->view_src != NULL;
}
void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
size_t max_avail = 0;
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
}
}
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
} else {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr;
block->addr = (char*)block->addr + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
tensor->data = addr;
tensor->buffer = alloc->buffer;
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
}
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, tensor);
size_t cur_max = (char*)addr - (char*)alloc->base + size;
if (cur_max > alloc->max_size) {
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i]) {
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
}
}
printf("\n");
}
#endif
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
if (ggml_tallocr_is_own(alloc, tensor) == false) {
// the tensor was not allocated in this buffer
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
// the easiest way to deal with this is just to ignore it
// AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
return;
}
void * ptr = tensor->data;
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, tensor);
#endif
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
// check if ptr is at the end of the block
if ((char*)block->addr + block->size == ptr) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
// check if ptr is at the beginning of the block
if ((char*)ptr + size == block->addr) {
block->addr = ptr;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].addr = ptr;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
}
void ggml_tallocr_reset(ggml_tallocr_t alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
if (alloc->measure) {
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
} else {
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
}
}
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ true,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_tallocr_reset(alloc);
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
alloc->measure = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
// create a backend buffer to get the correct tensor allocation sizes
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
alloc->measure = true;
ggml_tallocr_reset(alloc);
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
alloc->buffer_owned = true;
return alloc;
}
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
*alloc = (struct ggml_tallocr) {
/*.buffer = */ buffer,
/*.buffer_owned = */ false,
/*.base = */ ggml_backend_buffer_get_base(buffer),
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {0},
#endif
};
ggml_tallocr_reset(alloc);
return alloc;
}
struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
return alloc->buffer;
}
void ggml_tallocr_free(ggml_tallocr_t alloc) {
if (alloc == NULL) {
return;
}
if (alloc->buffer_owned) {
ggml_backend_buffer_free(alloc->buffer);
}
free(alloc);
}
bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
return alloc->measure;
}
size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
return alloc->max_size;
}
// graph allocator
struct hash_node {
int n_children;
int n_views;
};
struct ggml_gallocr {
ggml_tallocr_t talloc;
struct ggml_hash_set hash_set;
struct hash_node * hash_values;
size_t hash_values_size;
ggml_tallocr_t * hash_allocs;
int * parse_seq;
int parse_seq_len;
};
ggml_gallocr_t ggml_gallocr_new(void) {
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
*galloc = (struct ggml_gallocr) {
/*.talloc = */ NULL,
/*.hash_set = */ {0},
/*.hash_values = */ NULL,
/*.hash_values_size = */ 0,
/*.hash_allocs = */ NULL,
/*.parse_seq = */ NULL,
/*.parse_seq_len = */ 0,
};
return galloc;
}
void ggml_gallocr_free(ggml_gallocr_t galloc) {
if (galloc == NULL) {
return;
}
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
if (galloc->hash_allocs != NULL) {
free(galloc->hash_allocs);
}
if (galloc->parse_seq != NULL) {
free(galloc->parse_seq);
}
free(galloc);
}
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
free(galloc->parse_seq);
galloc->parse_seq = malloc(sizeof(int) * n);
for (int i = 0; i < n; i++) {
galloc->parse_seq[i] = list[i];
}
galloc->parse_seq_len = n;
}
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
return &galloc->hash_values[i];
}
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
if (a->type != b->type) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (a->ne[i] != b->ne[i]) {
return false;
}
if (a->nb[i] != b->nb[i]) {
return false;
}
}
return true;
}
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_RMS_NORM:
case GGML_OP_SOFT_MAX:
return true;
default:
return false;
}
}
static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
if (galloc->talloc != NULL) {
return galloc->talloc;
}
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
}
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
ggml_tallocr_t alloc = node_tallocr(galloc, view);
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
if (update_backend) {
view->backend = view->view_src->backend;
}
// views are initialized in the alloc buffer rather than the view_src buffer
view->buffer = alloc->buffer;
view->data = (char *)view->view_src->data + view->view_offs;
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
if (!alloc->measure) {
ggml_backend_buffer_init_tensor(alloc->buffer, view);
}
}
static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
if (node->data == NULL) {
if (ggml_is_view(node)) {
init_view(galloc, node, true);
} else {
// see if we can reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
struct ggml_tensor * parent = node->src[i];
if (parent == NULL) {
break;
}
// if the node's data is external, then we cannot re-use it
if (ggml_tallocr_is_own(alloc, parent) == false) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
struct hash_node * p_hn = hash_get(galloc, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
// the parent's data that it will need later (same layout requirement). the problem is that then
// we cannot free the tensor because the original address of the allocation is lost.
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
node->view_src = view_src;
view_src_hn->n_views += 1;
init_view(galloc, node, false);
return;
}
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
node->view_src = parent;
p_hn->n_views += 1;
init_view(galloc, node, false);
return;
}
}
}
}
ggml_tallocr_alloc(alloc, node);
}
}
}
static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
ggml_tallocr_t alloc = node_tallocr(galloc, node);
ggml_tallocr_free_tensor(alloc, node);
}
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
const int * parse_seq = galloc->parse_seq;
int parse_seq_len = galloc->parse_seq_len;
// count number of children and views
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (ggml_is_view(node)) {
struct ggml_tensor * view_src = node->view_src;
hash_get(galloc, view_src)->n_views += 1;
if (node->buffer == NULL && node->data != NULL) {
// view of a pre-allocated tensor, didn't call init_view() yet
init_view(galloc, node, true);
}
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
hash_get(galloc, parent)->n_children += 1;
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
init_view(galloc, parent, true);
}
}
}
// allocate tensors
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
int last_barrier_pos = 0;
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
for (int ind = 0; ind < n_nodes; ind++) {
// allocate a node if there is no parse_seq or this is not a barrier
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
int i = parse_seq_len ? parse_seq[ind] : ind;
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
allocate_node(galloc, parent);
}
// allocate node
allocate_node(galloc, node);
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
AT_PRINTF("%s", parent->name);
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
AT_PRINTF(", ");
}
}
AT_PRINTF("\n");
}
// update parents
// update immediately if there is no parse_seq
// update only at barriers if there is parse_seq
if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
int update_start = parse_seq_len ? last_barrier_pos : ind;
int update_end = parse_seq_len ? ind : ind + 1;
for (int i = update_start; i < update_end; i++) {
int node_i = parse_seq_len ? parse_seq[i] : i;
struct ggml_tensor * node = gf->nodes[node_i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * parent = node->src[j];
if (parent == NULL) {
break;
}
struct hash_node * p_hn = hash_get(galloc, parent);
p_hn->n_children -= 1;
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = hash_get(galloc, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
free_node(galloc, view_src);
}
}
else {
free_node(galloc, parent);
}
}
}
}
AT_PRINTF("\n");
if (parse_seq_len) {
last_barrier_pos = ind + 1;
}
}
}
}
size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
size_t hash_size = graph->visited_hash_table.size;
// check if the hash table is initialized and large enough
if (galloc->hash_set.size < hash_size) {
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
if (galloc->hash_values != NULL) {
free(galloc->hash_values);
}
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
galloc->hash_set.size = hash_size;
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
}
// reset hash table
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->talloc = talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
galloc->talloc = NULL;
size_t max_size = ggml_tallocr_max_size(talloc);
return max_size;
}
void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
const size_t hash_size = hash_set.size;
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
galloc->talloc = NULL;
// alloc hash_values if needed
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
free(galloc->hash_values);
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
galloc->hash_values_size = hash_size;
}
// free hash_set.keys if needed
if (galloc->hash_set.keys != NULL) {
free(galloc->hash_set.keys);
}
galloc->hash_set = hash_set;
// reset hash values
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
galloc->hash_allocs = hash_node_talloc;
ggml_tallocr_alloc_graph_impl(galloc, graph);
// remove unowned resources
galloc->hash_set.keys = NULL;
galloc->hash_allocs = NULL;
}
// legacy API wrapper
struct ggml_allocr {
ggml_tallocr_t talloc;
ggml_gallocr_t galloc;
};
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
*alloc = (struct ggml_allocr) {
/*.talloc = */ talloc,
/*.galloc = */ ggml_gallocr_new(),
};
return alloc;
}
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
}
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
}
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
}
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
}
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
}
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
return ggml_tallocr_get_buffer(alloc->talloc);
}
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
}
void ggml_allocr_free(ggml_allocr_t alloc) {
if (alloc == NULL) {
return;
}
ggml_gallocr_free(alloc->galloc);
ggml_tallocr_free(alloc->talloc);
free(alloc);
}
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
return ggml_tallocr_is_measure(alloc->talloc);
}
void ggml_allocr_reset(ggml_allocr_t alloc) {
ggml_tallocr_reset(alloc->talloc);
}
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
ggml_tallocr_alloc(alloc->talloc, tensor);
}
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
return ggml_tallocr_max_size(alloc->talloc);
}
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
}
// utils
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
size_t alignment = ggml_backend_buft_get_alignment(buft);
size_t nbytes = 0;
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL && t->view_src == NULL) {
nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
}
}
if (nbytes == 0) {
// all the tensors in the context are already allocated
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->data == NULL) {
if (t->view_src == NULL) {
ggml_tallocr_alloc(tallocr, t);
} else {
ggml_backend_view_init(buffer, t);
}
} else {
if (t->view_src != NULL) {
// view of a pre-allocated tensor
ggml_backend_view_init(buffer, t);
}
}
}
ggml_tallocr_free(tallocr);
return buffer;
}
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
}