Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

REF: Block._astype defer to astype_nansafe in more cases #38562

Merged
merged 9 commits into from
Dec 21, 2020
Merged
2 changes: 1 addition & 1 deletion pandas/core/arrays/datetimelike.py
Original file line number Diff line number Diff line change
Expand Up @@ -346,7 +346,7 @@ def astype(self, dtype, copy=True):
elif is_string_dtype(dtype) and not is_categorical_dtype(dtype):
if is_extension_array_dtype(dtype):
arr_cls = dtype.construct_array_type()
return arr_cls._from_sequence(self, dtype=dtype)
return arr_cls._from_sequence(self, dtype=dtype, copy=copy)
else:
return self._format_native_types()
elif is_integer_dtype(dtype):
Expand Down
9 changes: 7 additions & 2 deletions pandas/core/arrays/datetimes.py
Original file line number Diff line number Diff line change
Expand Up @@ -589,10 +589,15 @@ def astype(self, dtype, copy=True):

if is_datetime64_ns_dtype(dtype) and not is_dtype_equal(dtype, self.dtype):
# GH#18951: datetime64_ns dtype but not equal means different tz
# FIXME: this doesn't match DatetimeBlock.astype, xref GH#33401
new_tz = getattr(dtype, "tz", None)
if getattr(self.dtype, "tz", None) is None:
if self.tz is None:
return self.tz_localize(new_tz)
result = self.tz_convert(new_tz)
elif new_tz is None:
result = self.tz_convert("UTC").tz_localize(None)
else:
result = self.tz_convert(new_tz)

if copy:
result = result.copy()
if new_tz is None:
Expand Down
17 changes: 10 additions & 7 deletions pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@
conversion,
iNaT,
ints_to_pydatetime,
ints_to_pytimedelta,
)
from pandas._libs.tslibs.timezones import tz_compare
from pandas._typing import AnyArrayLike, ArrayLike, Dtype, DtypeObj, Scalar
Expand Down Expand Up @@ -987,15 +986,21 @@ def astype_nansafe(
elif not isinstance(dtype, np.dtype):
raise ValueError("dtype must be np.dtype or ExtensionDtype")

if arr.dtype.kind in ["m", "M"] and (
issubclass(dtype.type, str) or dtype == object
):
from pandas.core.construction import ensure_wrapped_if_datetimelike

arr = ensure_wrapped_if_datetimelike(arr)
return arr.astype(dtype, copy=copy)

if issubclass(dtype.type, str):
return lib.ensure_string_array(
arr.ravel(), skipna=skipna, convert_na_value=False
).reshape(arr.shape)

elif is_datetime64_dtype(arr):
if is_object_dtype(dtype):
return ints_to_pydatetime(arr.view(np.int64))
elif dtype == np.int64:
if dtype == np.int64:
if isna(arr).any():
raise ValueError("Cannot convert NaT values to integer")
return arr.view(dtype)
Expand All @@ -1007,9 +1012,7 @@ def astype_nansafe(
raise TypeError(f"cannot astype a datetimelike from [{arr.dtype}] to [{dtype}]")

elif is_timedelta64_dtype(arr):
if is_object_dtype(dtype):
return ints_to_pytimedelta(arr.view(np.int64))
elif dtype == np.int64:
if dtype == np.int64:
if isna(arr).any():
raise ValueError("Cannot convert NaT values to integer")
return arr.view(dtype)
Expand Down
1 change: 1 addition & 0 deletions pandas/core/generic.py
Original file line number Diff line number Diff line change
Expand Up @@ -5852,6 +5852,7 @@ def astype(
elif is_extension_array_dtype(dtype) and self.ndim > 1:
# GH 18099/22869: columnwise conversion to extension dtype
# GH 24704: use iloc to handle duplicate column names
# TODO(EA2D): special case not needed with 2D EAs
results = [
self.iloc[:, i].astype(dtype, copy=copy)
for i in range(len(self.columns))
Expand Down
20 changes: 1 addition & 19 deletions pandas/core/internals/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@
)
from pandas.core.base import PandasObject
import pandas.core.common as com
from pandas.core.construction import array as pd_array, extract_array
from pandas.core.construction import extract_array
from pandas.core.indexers import (
check_setitem_lengths,
is_empty_indexer,
Expand Down Expand Up @@ -676,24 +676,6 @@ def _astype(self, dtype: DtypeObj, copy: bool) -> ArrayLike:
values = values.astype(dtype, copy=copy)

else:
if issubclass(dtype.type, str):
if values.dtype.kind in ["m", "M"]:
# use native type formatting for datetime/tz/timedelta
arr = pd_array(values)
# Note: in the case where dtype is an np.dtype, i.e. not
# StringDtype, this matches arr.astype(dtype), xref GH#36153
values = arr._format_native_types(na_rep="NaT")

elif is_object_dtype(dtype):
if values.dtype.kind in ["m", "M"]:
# Wrap in Timedelta/Timestamp
arr = pd_array(values)
values = arr.astype(object)
else:
values = values.astype(object)
# We still need to go through astype_nansafe for
# e.g. dtype = Sparse[object, 0]

values = astype_nansafe(values, dtype, copy=True)

return values
Expand Down
7 changes: 6 additions & 1 deletion pandas/tests/arrays/string_/test_string.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,12 @@ def test_string_methods(input, method, dtype, request):
def test_astype_roundtrip(dtype, request):
if dtype == "arrow_string":
reason = "ValueError: Could not convert object to NumPy datetime"
mark = pytest.mark.xfail(reason=reason)
mark = pytest.mark.xfail(reason=reason, raises=ValueError)
request.node.add_marker(mark)
else:
mark = pytest.mark.xfail(
reason="GH#36153 casting from StringArray to dt64 fails", raises=ValueError
)
request.node.add_marker(mark)

ser = pd.Series(pd.date_range("2000", periods=12))
Expand Down
28 changes: 28 additions & 0 deletions pandas/tests/frame/methods/test_astype.py
Original file line number Diff line number Diff line change
Expand Up @@ -611,3 +611,31 @@ def test_astype_tz_object_conversion(self, tz):
# do real test: object dtype to a specified tz, different from construction tz.
result = result.astype({"tz": "datetime64[ns, Europe/London]"})
tm.assert_frame_equal(result, expected)

def test_astype_dt64_to_string(self, frame_or_series, tz_naive_fixture, request):
tz = tz_naive_fixture
if tz is None:
mark = pytest.mark.xfail(
reason="GH#36153 uses ndarray formatting instead of DTA formatting"
)
request.node.add_marker(mark)

dti = date_range("2016-01-01", periods=3, tz=tz)
dta = dti._data
dta[0] = NaT

obj = frame_or_series(dta)
result = obj.astype("string")

# Check that Series/DataFrame.astype matches DatetimeArray.astype
expected = frame_or_series(dta.astype("string"))
tm.assert_equal(result, expected)

item = result.iloc[0]
if frame_or_series is DataFrame:
item = item.iloc[0]
assert item is pd.NA

# For non-NA values, we should match what we get for non-EA str
alt = obj.astype(str)
assert np.all(alt.iloc[1:] == result.iloc[1:])